Open Access
Issue |
Climatologie
Volume 16, 2019
|
|
---|---|---|
Page(s) | 91 - 128 | |
DOI | https://doi.org/10.4267/climatologie.1413 | |
Published online | 10 April 2020 |
- Agreste, 2019. Infos rapides. Viticulture, août 2019, n° 2019–120. https://agreste.agriculture.gouv.fr/agreste-web/disaron/IraVit19120/detail/ [Google Scholar]
- Augspurger C.K., 2009. Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Funct. Ecol., 23, 1031–1039. https://doi.org/10.1111/j.1365-2435.2009.01587.x [CrossRef] [Google Scholar]
- Augspurger C.K., 2013. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology, 94, 41–50. https://doi.org/10.1890/12-0200.1 [CrossRef] [PubMed] [Google Scholar]
- Augustin J., Erasmi S., 2008. Klimawandel – Apfelblüte macht das Regionalklima sichtbar. NAD aktuell 5, Leipzig: Leibniz-Institut für Länderkunde, 3 p. + 3 graphiques et 4 cartes. http://aktuell.nationalatlas.de/Klimawandel.5_05-2008.0.html/ [Google Scholar]
- Barbeau G., 2007. Climat et vigne en moyenne vallée de la Loire, France. Congrès sur le climat et la viticulture, Saragosse, Espagne, 10-14 avril, seconde session « climat et terroir », 96–101. https://prodinra.inra.fr/?locale=fr#!ConsultNotice:22836 [Google Scholar]
- Barbeau G., Neethling E., Ollat N., Quenol H., Touzard J.-M., 2015. Adaptation au changement climatique en agronomie viticole. Revue AE&S, 5, 1, 9 p. En ligne. [Google Scholar]
- Bárdossy A., Caspary H.J., 1990. Detection of climate change in Europe by analysing European atmospheric circulation patterns from 1881 to 1989. Theoretical and Applied Climatology, 42, 155–167. https://doi.org/10.1007/BF00866871 [CrossRef] [Google Scholar]
- Belleflamme A., Fettweis X., Erpicum M., 2012. Les modèles globaux projettent-ils plus de blocages anticycloniques en Europe pour le futur ? Actes du 25ème Colloque de l’Association Internationale de Climatologie, Grenoble, 99–104. https://orbi.uliege.be/handle/2268/130575 [Google Scholar]
- Beltrando G., 1998. Les gelées printanières en Champagne viticole. Quelques résultats obtenus à partir d’un nouveau réseau de stations automatiques. La Météorologie, 21, 30–42. https://doi.org/10.4267/2042/47040 [Google Scholar]
- Bigler C., Bugmann H., 2018. Climate induced shifts in leaf unfolding and frost risk of European trees and shrubs. Scientific Reports 8(9865), 10 p. https://doi.org/10.1038/s41598-018-27893-1 [CrossRef] [Google Scholar]
- Bloesch B. et Viret O., 2008. Stades phénologiques repères de la vigne. Revue suisse Vitic. Arboric. Hortic., 40 (6), I–IV. http://www.agrometeo.ch/sites/default/files/documents/stades_pheno_vigne.pdf [Google Scholar]
- Bonnefoy C., Quenol H., Planchon O., Barbeau G., 2010. Températures et indices bioclimatiques dans le vignoble du Val de Loire dans un contexte de changement climatique. EchoGéo [En ligne], numéro 14 | 2010, http://echogeo.revues.org/12146. [Google Scholar]
- Bonnefoy C., Quenol H., Bonnardot V., Barbeau G., Madelin M., Planchon O., Neethling E., 2012. Temporal and Spatial Analysis of Temperatures in a French wine-producing area: the Loire Valley. International Journal of Climatology, 10.1002/joc.3552 [Google Scholar]
- Bonnefoy C., Madelin M., Quénol H., 2014. Modélisation spatiale des températures dans le vignoble des coteaux du Layon. Revue Internationale de Géomatique, 24/3, 377–400. https://doi.org/10.3166/rig.24.377-400 [CrossRef] [Google Scholar]
- Briche É., Quenol H., Beltrando G., 2011. Changement climatique dans le vignoble champenois L’année 2003, préfigure-t-elle les prévisions des modèles numériques pour le XXIe siècle ? L’Espace géographique, 2011/2(40), 164–175. https://doi.org/10.3917/eg.402.0164 [Google Scholar]
- Cahynová M., Huth R., 2009a. Enhanced lifetime of atmospheric circulation types over Europe: fact or fiction? Tellus, 61A, 407–416. https://doi.org/10.1111/j.1600-0870.2009.00393.x [CrossRef] [Google Scholar]
- Cahynová M., Huth R., 2009b. Changes of atmospheric circulation in Central Europe and their influence on climatic trends in the Czech Republic. Theoretical and Applied Climatology, 96, 57–68. https://doi.org/10.1007/s00704-008-0097-2 [CrossRef] [Google Scholar]
- Cantat O., Brunet L., 2001. Discontinuité géographique et particularités climatiques en Basse-Normandie. Annales de Géographie, 622, 579–596. https://doi.org/10.3406/geo.2001.1703 [CrossRef] [Google Scholar]
- Cantat O., 2015. Proposition méthodologique pour une approche globale et objective des types de temps en France métropolitaine. Étude de climatologie physionomique et appliquée. HDR, Vol. 3, Université Paris 7 Diderot, 264 p. [Google Scholar]
- Carrega P., 2003. Le climat aux échelles fines. Publications de l’Association internationale de Climatologie, 15, 19–30. http://www.climato.be/aic/colloques/actes/PubAIC/art_2003_vol15/Article_1_P_Carrega.pdf [Google Scholar]
- Castel T., Lecomte C., Richard Y., Lejeune-Hénaut I., Larmure A., 2017. Frost stress evolution and winter pea ideotype in the context of climate warming at a regional scale. OCL, 1, D106. https://doi.org/10.1051/ocl/2017002 [CrossRef] [EDP Sciences] [Google Scholar]
- Cellier P., 1989.: Mécanismes du refroidissement nocturne : application à la prévision des gelées de printemps. In Le gel en agriculture, INRA, 145–164. https://prodinra.inra.fr/record/102417 [Google Scholar]
- Chamberlain C. J., Cook B. I., García De Cortázar-Atauri I., Wolkovich E. M., 2019. Rethinking false spring risk. Global Change Biology, 25(7), 2209–2220. https://doi.org/10.1111/gcb.14642 [CrossRef] [Google Scholar]
- Chmielewski F.-M., 2007. Phänologie – ein Indikator zur Beurteilung der Auswirkungen von Klimaänderungen auf die Biosphäre. In: Behr H.D. (Ed.) : Phänologie, Deutscher Wetterdienst: Promet, 33. Jahrgang, Heft 1/2, 28–35. https://rcc.dwd.de/DE/leistungen/pbfb_verlag_promet/pdf_promethefte/33_1_2_pdf.pdf [Google Scholar]
- Chmielewski F.-M., Rötzer T., 2002. Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Climate Research, 19, 257–264. https://doi.org/10.3354/cr019257 [CrossRef] [Google Scholar]
- Choisnel E., Payen D., 1988. Les climats de la France. Supplément de La Recherche, 201, 32–41. [Google Scholar]
- Christner B.C., Cai R., Morris C.E., Mccarter K.S., Foreman C.M., Skidmore M.L., Montross S.N., Sands D.C., 2008. Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. Proceedings of the National Academy, Environmental Sciences, 105, 18854–18859. https://doi.org/10.1073/pnas.0809816105 [CrossRef] [Google Scholar]
- Cochard H., Lemoine D., Ameglio T., Granier A., 2001. Mechanism of xylem recovery from winter embolism in Fagus sylvatica. Tree Physiol., 21, 27–33. 10.1093/treephys/21.1.27 [CrossRef] [Google Scholar]
- CRC, 1985. Cartographie des climats de la France (document papier consultable au CRC, Dijon). [Google Scholar]
- De Brouwer M., 2016. Les gelées dans les vignobles belges et voisins, quelles mesures de protection ? Site des amateurs de vignes et de vins de fruits dans les régions septentrionales, dossier « protection gelées », 10 p., www.vignes.be/dossier_protection_gelées.pdf [Google Scholar]
- De Resseguier L., Petitjean T., Van Leeuwen C., 2018. Variabilité de la température durant les nuits de gel du mois d’avril 2017 Région viticole de Pomerol, Saint-Emilion et leurs satellites. https://www.adviclim.eu/wp-content/uploads/2017/05/2017-05-12_Article-Gel-Bordeaux1.pdf [Google Scholar]
- Douguedroit A., 2004. Quelle exception française en matière de « types de temps » ? Norois, 191, 33–39. https://doi.org/10.4000/norois.1017 [Google Scholar]
- Duchêne E., Schneider C., 2005. Grapevine and climatic changes: a glance at the situation in Alsace, Agronomy for Sustainable Development, 25, 93–99. http://doi.org/10.1051/agro:2004057, https://prodinra.inra.fr/?locale=fr#!ConsultNotice:12437 [Google Scholar]
- Escourrou G., 1978. Climatologie pratique. Masson, Paris, 172 p. [Google Scholar]
- Escourrou G., 1981. Climat et Environnement. Les facteurs locaux du climat, Masson, Paris, 182 p. [Google Scholar]
- Estrella N., Sparks T.H., Menzel A., 2007. Trends and temperature response in the phenology of crops in Germany. Global Change Biology, 13, 1737–1747. https://doi.org/10.1111/j.1365-2486.2007.01374.x [CrossRef] [Google Scholar]
- Fallot J.-M., 2000. Évolution du nombre de jours avec des précipitations abondantes en Suisse durant le 20e siècle. Publications de l’Association Internationale de Climatologie, 13, 100–109. [Google Scholar]
- Fuller M.P., Telli G., 1999. An investigation of the frost hardiness of grapevine (Vitis vinifera) during bud break. Annals of Applied Biology, 135, 589–595. https://doi.org/10.1111/j.1744-7348.1999.tb00891.x [CrossRef] [Google Scholar]
- García-Valero J.A., Montávez J.P., Gómez-Navarro J. J., Jiménez-Guerrero P., 2015. Attributing trends in extremely hot days to changes in atmospheric dynamics. Natural Hazards and Earth System Sciences, 15, 2143–2159. https://doi.org/10.5194/nhess-15-2143-2015 [CrossRef] [Google Scholar]
- García De Cortázar-Atauri I., Brisson N., Gaudillere J.-P., 2009. Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). International Journal of Biometeorology, 53, 317–326. https://doi.org/10.1007/s00484-009-0217-4 [CrossRef] [Google Scholar]
- Gash J. H. C., Lloyd W. J., André C. R., Goutorbe J.-C., Gelpe J. H. C., 1989. Micrometeorological measurements in Les Landes forest during HAPEX-MOBILHY. Agric. For. Meteorol., 46, 131–147. https://doi.org/10.1016/0168-1923(89)90117-2 [CrossRef] [Google Scholar]
- Gavrilescu C., Bois B., Castel T., Larmure A., Ouvrie M., Richard Y., 2019. Analyse spatiale de l’évolution du risque de gel sur la vigne en Bourgogne-Franche-Comté. Actes du 32ème colloque l’Association Internationale de Climatologie, Thessalonique, 181–185. https://hal.archives-ouvertes.fr/hal-02189405/ [Google Scholar]
- Geiger R., 1966. The Climate near the ground. Harvard University Press, Cambridge, MA, 611 p. https://doi.org/10.1016/0016-0032%2866%2990072-X [Google Scholar]
- Gerstengarbe F.W., Werner P.C., 2005 : Katalog der Großwetterlagen Europas (1881-2004) nach Paul Hess und Helmut Brezowsky. PIK Report, 100, 153 p. https://www.pik-potsdam.de/research/publications/pikreports/.files/pr100.pdf [Google Scholar]
- Gu L., Hanson P.J., Mac Post W., Kaiser D.P., Yang B., Nemani R., Pallardy S.G., Meyers T., 2008. The 2007 eastern US spring freeze: Increased cold damage in a warming world ? Bio Science, 58, 253–262. https://doi.org/10.1641/B580311 [Google Scholar]
- Hänninen H., 1991. Does climatic warming increase the risk of frost damage in northern trees. Plant, Cell & Environment, 14, 449–454. https://doi.org/10.1111/j.1365-3040.1991.tb01514.x [CrossRef] [Google Scholar]
- Hansen J., Ruedy R., Sato M., Lo K., 2010. Global surface temperature change. Reviews of Geophysics, 48 (4), 29 p. https://doi.org/10.1029/2010RG000345 [CrossRef] [Google Scholar]
- Hess P., Brezowsky H., 1952. Katalog der Grosswetterlagen Europas. Bibliothek des Deutschen Wetterdienstes in der US-Zone, 33, 39 p. [Google Scholar]
- Hufkens K., Friedl M.A., Keenan T.F., Sonnentag O., Bailey A., O‘Keefe J., Richardson A.D., 2012. Ecological impacts of a widespread frost event following early spring leaf-out. Global Change Biology, 18, 2365–2377. https://doi.org/10.1111/j.1365-2486.2012.02712.x [CrossRef] [Google Scholar]
- IFV (Institut français de la vigne et du vin), 2018. aléas climatiques de la vigne. La grêle et le gel de printemps : comment s’en protéger ? Cahier Itinéraire, 27, 36 p. https://www.vignevin.com/wp-content/uploads/2019/03/Cahier_Itineraire_n___27_-_Gel_et_Grele_-_VF_BD-1.pdf [Google Scholar]
- IPCC, 2013. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://www.ipcc.ch/report/ar5/wg1/ [Google Scholar]
- Itier B., Flura D., Brun O., Luisetti J., Gaignard J.-L., Choisy C., Lemoine G., 1991. Analyse de la gélivité des bourgeons de vigne. Expérimentation in situ sur le vignole champenois, Agronomie, 11, 169–174. https://hal.archives-ouvertes.fr/hal-00885362/ [CrossRef] [Google Scholar]
- James P.M., 2007. An objective classification for Hess and Brezowsky Grosswetterlagen over Europe. Theoretical and Applied Climatology, 88, 17–42. https://doi.org/10.1007/00704-006-0239-3. [CrossRef] [Google Scholar]
- Joly D., Brossard T., Cardot H., Cavailhes J., Hilal M. et Wavreskyjoly P., 2010. Les types de climats en France, une construction spatiale. Cybergeo: European Journal of Geography [En ligne], Cartographie, Imagerie, SIG, document 501, mis en ligne le 18 juin 2010. DOI : 10.4000/cybergeo.23155 [Google Scholar]
- Jones G.V., Davis R.E., 2000. Climate influences on grapevine phenology, grape composition and wine production and quality for Bordeaux, France, Am. J. Enol. Vitic., 51(3) 249–261. https://www.ajevonline.org/content/51/3/249 [Google Scholar]
- Jones P. D., Lister D. H., Orborn T. J., Harpham C., Salmon M., Morice C. P., 2012. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research, 117 (D5), 29 p. https://doi.org/10.1029/2011JD017139 [Google Scholar]
- Kistner E., Kellner O., Andresen J., Todey D., Morton L.W., 2018. Vulnerability of specialty crops to short-term climatic variability and adaptation strategies in the Midwestern USA. Clim. Change, 146, 1–14. https://doi.org/10.1007/s10584-017-2066-1 [CrossRef] [Google Scholar]
- Köppen W., 1900. Versuch einer Klassifikation der Klimate, vorzugweise nach ihren Beziehungen zur Pflanzenwelt. Geogr. Zeitschrift, 6, 657–679. http://koeppen-geiger.vu-wien.ac.at/pdf/Koppen_1900.pdf [Google Scholar]
- Kreyling J., Stahlmann R., Beierkuhnlein C., 2012. Spatial variation in leaf damage of forest trees and the regeneration after the extreme spring frost event in May 2011. For Jagdzeitung, 183, 15–22. https://www.sauerlaender-verlag.com/allgemeine-forst-und-jagdzeitung-2012-2/# [Google Scholar]
- Kührer E., 2017. Der Spätfrost 2016 in Niederösterreich, Erfahrungen und Lehren. Der Winzer (Frost-Themen), 02, 84–87. https://www.lako.at/de/versuche/inc/modules/lako_versuche/pdf/weinbau_neu/2016/spaetfrost_krems_2016.pdf [Google Scholar]
- Kyselý J., Huth R., 2006. Changes in atmospheric circulation over Europe detected by objective and subjective methods. Theoretical and Applied Climatology, 85, 19–36. https://doi.org/10.1007/s00704-005-0164-x [CrossRef] [Google Scholar]
- Leroy M., 1999. Classification d’un site, Notes techniques, N°35, DSO, Météo-France, 12 p. http://meteo.besse83.free.fr/imfix/35-1999.pdf [Google Scholar]
- Leroy M., Lafaysse C., 1993. Recommandations pour l’implantation et l’aménagement des parcs météorologiques. Notes techniques, N°31, DSO, Météo-France, 10 p. [Google Scholar]
- Liu Q., Piao S., Janssens I.A., Fu Y., Peng S., Lian X., Ciais P., Myneni R.B., Peñuelas J., Wang T., 2018. Extension of the growing season increases vegetation exposure to frost. Nature Communications, 9(426), 8 p. https://doi.org/10.1038/s41467-017-02690-y [CrossRef] [Google Scholar]
- Luisetti J., Gaignard J.-L., Devaux M., 1991. Pseudomonas syringae pv. syringae as one of the Factors affecting the ice nucleation of grapevine buds in controlled conditions. Journal of Phytopathology, 133, 334–344. https://doi.org/10.1111/j.1439-0434.1991.tb00169.x [CrossRef] [Google Scholar]
- Madelin M., 2004 : L’aléa gélif printanier dans le vignoble marnais en Champagne: modélisations spatiales aux échelles fines des températures minimales et des écoulements de l’air. Thèse de Doctorat de l’Université Paris VII, UMR Géographie-cité et UMR Prodig, 412 p. https://tel.archives-ouvertes.fr/tel-00008906 [Google Scholar]
- Madelin M., Chabin J.-P., Bonnefoy C., 2008. Global warming and its consequences on the Beaune vineyards. Enometrica, 1(2), 9–19. [Google Scholar]
- Marino G.P., Kaiser D.P., Gu L., Ricciuto D.M., 2011. Reconstruction of false spring occurrences over the southeastern United States, 1901–2007: an increasing risk of spring freeze damage? Environ Res. Lett., 6, 024015, 10.1088/1748-9326/6/2/024015 [CrossRef] [Google Scholar]
- Martin M., Gavazov K., Körner C., Hättenschwiler S., Rixen C., 2010. Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO2. Global Change Biology, 16, 1057–1070. https://doi.org/10.1104/pp.106.085704 [CrossRef] [Google Scholar]
- Mayr S., Cocahrd H., Ameglio T., Kikuta S. B., 2007. Embolism formation during freezing in the wood of Picea abies. Plant Physiol., 143, 60–67. 10.1104/pp.106.085704 [CrossRef] [Google Scholar]
- McIntyre G.N., Lider L.A., Ferrari N.L., 1982. The chronological classification of grapevine phenology. American Journal of Enology and Viticulture, 33, 80–85. https://www.ajevonline.org/content/33/2/80 [Google Scholar]
- Menzel A., Fabian P., 1999. Growing season extended in Europe. Nature, 397, 659, 10.1038/17709. [CrossRef] [Google Scholar]
- Météo-France, 1986. Atlas climatique de la France. Paris, 30 p. [Google Scholar]
- Mills L.J., Ferguson J.C., Keller M., 2006. Cold-hardiness evaluation of grapevine buds and cane tissues. American Journal of Enology and Viticulture, 57, 2, 194–200. https://www.ajevonline.org/content/57/2/194 [Google Scholar]
- Molitor D., Caffarra A., Sinigoj P., Pertot I., Hoffmann L., Junk J., 2014. Late frost damage risk for viticulture under future climate conditions: a case study for the Luxembourgish winegrowing region. Australian Journal of Grape and Wine Research, 20, 160–168. https://doi.org/10.1111/ajgw.12059 [CrossRef] [Google Scholar]
- Molitor D., Junk J., Schultz M., 2019. Massive Spätfrostschäden an der Südlichen Weinmosel. Die Winzer-Zeitschrift, Juni 2019, 14–15. [Google Scholar]
- Morin X., Chuine I., 2014. Will tree species experience increased frost damage due to climate change because of changes in leaf phenology? Canadian Journal of Forest Research, 44, 1555–1565. https://doi.org/10.1139/cjfr-2014-0282 [CrossRef] [Google Scholar]
- Mosedale J.R., Wilson R.J. & Maclean I.M.D., 2015. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions. PloS ONE, 10(10), 16 p. https://doi.org/10.1371/journal.pone.0141218 [CrossRef] [Google Scholar]
- Neethling E., Petitjean T., Quénol H., Barbeau G., 2017. Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitig. Adapt. Strateg. Glob. Change, 22(5), 777–803. https://doi.org/10.1007/s11027-015-9698-0 [CrossRef] [Google Scholar]
- Ningre F., Colin F., 2007. Frost damage on the terminal shoot as a risk factor of fork incidence on common beech (Fagus sylvatica L.). Ann. For. Sci., 64, 79–86. https://doi.org/10.1051/forest:2006091, https://hal.archives-ouvertes.fr/hal-00884060 [CrossRef] [EDP Sciences] [Google Scholar]
- Oke T. R., 1978. Boundary Layer Climates, Methuen, London, 372 p. https://doi.org/10.1002/qj.49710544628 [Google Scholar]
- Ollat N., Touzard J. M., Van Leeuwen C., 2016. Climate change impacts and adaptations: New challenges for the wine industry. Journal of Wine Economics, 11(1), 139–149. https://doi.org/10.1017/jwe.2016.3 [CrossRef] [Google Scholar]
- Pedelaborde P., 1958. Le climat du Bassin parisien : essai d’une méthode rationnelle de climatologie physique. Paris, Génin, 539 p. [Google Scholar]
- Pinty J.-P., Mascart P., Richard E., Rosset R., 1989. An investigation of mesoscale flows induced by vegetation inhomogeneities using an evapotranspiration model calibrated against HAPEX-MOBILHY data. J. Appl. Meteorol., 28, 976–992. https://doi.org/10.1175/1520-0450(1989)028<0976:AIOMFI>2.0.CO;2 [CrossRef] [Google Scholar]
- Planchon O., 1994. A propos de la notion de climat maritime. In: L’air du Temps, Etudes Méditerranéennes, Université de Poitiers, 16, 119–130. http://geoprodig.cnrs.fr/items/show/84225 [Google Scholar]
- Planchon O., 1997. Les climats maritimes dans le Monde. Thèse de Doctorat, Presses Universitaires du Septentrion, Villeneuve d’Ascq, 233 p. [Google Scholar]
- Planchon O., Endlicher W., 2014. Dynamique spatio-temporelle du climat de l’Europe centrale : analyse et impacts dans les régions viticoles. In : Quénol, H. (sous la direction de) Changement climatique et terroirs viticoles. Editions Lavoisier Tec&Doc, Chap. 4, 115–146. [Google Scholar]
- Planchon O., Quénol H., Irimia L.M., Patriche C.V., 2015. European cold wave during February 2012 and impacts in wine growing regions of Moldavia (Romania). Theoretical and Applied Climatology, 120 (3), 469–478. https://doi.org/10.1007/s00704-014-1191-2 [CrossRef] [Google Scholar]
- Planchon O., Quénol H., Wahl L., Cantat O., Bonnefoy C., 2009. Types de circulations atmosphériques et types de temps en situations gélives dans les régions viticoles de la moitié nord de la France. Geographia Technica, Numéro Spécial (22e colloque de l’AIC, Cluj, 1-5 septembre 2009), Cluj University Press, 371–376. http://technicalgeography.org/pdf/sp_i_2009/gt_sp_2009.pdf [Google Scholar]
- Planchon O., Cantat O., Bois B., 2019. Variabilité climatique printanière et phénologie végétale en Auxois : exemple d’Alise-Sainte-Reine (Côte-d’Or). Revue Scientifique Bourgogne-Franche-Comté Nature, 29-2019, 349–364. [Google Scholar]
- Polgar C.A., Primack R.B., 2011. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytologist, 191, 926–941. https://doi.org/10.1111/j.1469-8137.2011.03803.x [CrossRef] [Google Scholar]
- Proust I., Touchais P., 2019. Le gel, comme une vilaine habitude en Loire. www.vitisphere.com/actualite-89345-Le-gel-comme-une-vilaine-habitude-en-Loire.htm. [Google Scholar]
- Quénol H., 2002. Climatologie appliquée aux échelles spatiales fines : influence des haies brise-vent et d’un remblai ferroviaire sur le gel printanier et l’écoulement du mistral. Thèse de Doctorat USTL, Édition ANRT, ISBN 2-284-04081-0, 283 p. [Google Scholar]
- Quénol H., Planchon O., Neethling E., Bonnefoy C., Barbeau G., 2016. Un exemple d’enjeu du changement climatique après 2050 : le vignoble du Val de Loire. In Moatar F. et Dupont N. (sous la direction de) : La Loire fluviale et estuarienne : un milieu en évolution, Quae Éditions (Collection Synthèses), Chap. 20, 262–265. ISBN : 978-2-7592-2401-2 [Google Scholar]
- Quénol H., Planchon O., Wahl L., 2008. Méthodes d’identification des climats viticoles. Bulletin de la Société Géographique de Liège, 51, 127–137. https://popups.uliege.be/0770-7576/index.php?id=1553 [Google Scholar]
- Quénol H., 2014. Changement climatique et terroirs viticoles. Ed. Lavoisier, coll. Tech. & Doc, 444p. [Google Scholar]
- Quénol H., Bonnardot V., 2014. A multi-scale climatic analysis of viticultural terroirs in the context of climate change: the “TERADCLIM” project. International Journal of Vine and Wine Sciences, Special Laccave, 23–32. [Google Scholar]
- Quénol H., Grosset M., Barbeau G., Van Leeuwen K., Hofmann M., Foss C., Irimia L., Rochard J., Boulanger J.-P., Tissot C., Miranda C., 2014. Adaptation of viticulture to climate change: high resolution observations of adaptation scenario for viticulture: the adviclim european project. Bulletin de l’OIV, 87, 395–406. https://prodinra.inra.fr/ft?id={40F7F87E-D2B3-406A-8789-8FCC3A4B6A58} [Google Scholar]
- Reid P. C., Hari R. E., Beaugrand G., Livingstone D. M., Marty C., Straile D., Barichivich J., Goberville E., Adrian R., Aono Y., Brown R., Foster J., Groisman P., Hélaouët P., Hsu H., Kirby R., Knight J., Kraberg A., Li J., Lo T.-T., Myneni R. B., North R. P., Pounds J. A., Sparks T., Stübi R., Tian Y., Wiltshire K. H., Xiao D., Zhu Z., 2016. Global impacts of the 1980s regime shift. Global Change Biology, 22, 682–703. https://doi.org/10.1111/gcb.13106 [CrossRef] [PubMed] [Google Scholar]
- Rouvellac E., 2013. Le terroir, essai d’une réflexion géographique à travers la viticulture. Dossier d’habilitation à diriger des recherches, volume 2, Université de Limoges, 233 p. https://tel.archives-ouvertes.fr/tel-00933444/ [Google Scholar]
- Sadras V.O., Reynolds M.P., De La Vega A.J., Petrie P.R., Robinson R., 2009. Phenotypic plasticity of yield and phenology in wheat, sunflower and grapevine. Field Crops Res., 110, 242–250. https://doi.org/10.1016/j.fcr.2008.09.004 [CrossRef] [Google Scholar]
- Scheifinger H., Menzel A., Koch E., Peter C., Ahas R., 2002. Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in Central Europe. International Journal of Climatolology, 22, 1739–1755. https://doi.org/10.1002/joc.817 [CrossRef] [Google Scholar]
- Schultz H.R., 2000. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects, Australian Journal of Grape and Wine Research, 6, 2–12. https://doi.org/10.1111/j.1755-0238.2000.tb00156.x [CrossRef] [Google Scholar]
- Sevanto S., Holbrook N. M., Ball M. C., 2012. Freeze/Thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation. Front. Plant Sci., 3, 107. 10.3389/fpls.2012.00107 [CrossRef] [Google Scholar]
- Sgubin G., Swingedouw D., Dayon G., García de Cortázar-Atauri I., Ollat N., Pagé C., Van Leeuwen C., 2018. The risk of tardive frost damage in French vineyards in a changing climate. Agricultural and Forest Meteorology, 250-251, 226–242. https://doi.org/10.1016/j.agrformet.2017.12.253 [CrossRef] [Google Scholar]
- Snyder R.L. et Melo-Abreu J.P.D., 2005. Frost Protection: Fundamentals, Practice and Economics. Volume 1, Rome, Food & Agriculture Org., 223 p. http://www.fao.org/3/y7223e/y7223e00.htm [Google Scholar]
- Sperry J. S., Sullivan J. E. M., 1992. Xylem embolism in response to freezethaw cycles and water stress in ring-porous, diffuse-porous and conifer species. Plant Physiol., 100, 605–613. 10.1104/pp.100.2.605 [CrossRef] [PubMed] [Google Scholar]
- Tyree M. T., Davis S. D., Cochard H., 1994. Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J. 15, 335–360. DOI: 10.1080/03683621.1940.11513533 [CrossRef] [Google Scholar]
- Tyree M. T., Zimmermann M. H., 2002. Xylem Structure and the Ascent of Sap. Berlin: Springer Verlag, 283 p. [Google Scholar]
- Vigneau J.-P., 1997. Le climat océanisé de la façade atlantique médiane de l’Europe. In Le climat, l’Eau et les Hommes, ouvrage en l’honneur de Jean Mounier, 227–244. [Google Scholar]
- Vigneau J.-P., 2005. Climatologie. Armand Colin, coll. Campus, 198 p. [Google Scholar]
- Vitasse Y., Schneider L., Rixen C., Christen D., Rebetez M., 2018. Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology, 248, 60–69. https://doi.org/10.1016/j.agrformet.2017.09.005 [CrossRef] [Google Scholar]
- Werner P.C., Gerstengarbe F.-W., 2010. Katalog der Großwetterlagen Europas (1881-2009) nach Paul Hess und Helmut Brezowsky. PIK Report 119, 146 p. https://www.pik-potsdam.de/research/publications/pikreports/.files/pr119.pdf [Google Scholar]
- Werner P.C., Gerstengarbe F.-W., 2011. Spatial-temporal changes of meteorological parameters in selected circulation patterns. PIK Report 123, 19 p. https://www.pik-potsdam.de/research/publications/pikreports/.files/pr123.pdf [Google Scholar]
- Wilson S., 2001. Frost management in cool climate vineyards. Report to Grape and Wine Research and Development Corporation, Adelaide, South Australia [Google Scholar]
- Xoplaki E., Trigo R.M., García-Herrera R., Barriopedro D., D’andrea F., Fischer E.M., Gimeno L., Gouveia C., Hernandez E., Kuglitsch F.G., Mariotti A., Nieto R., Pinto J.G., Pozo-Vázquez D., Saaroni H., Toreti A., Trigo I.F., Vicente-Serrano S.M., Yiou P., Ziv B., 2012. Large-Scale atmospheric circulation driving extreme climate events in the Mediterranean and related impacts. In: Lionello P. (ed.), The Climate of the Mediterranean Region, Chap. 6, 347–417. https://doi.org/10.1016/B978-0-12-416042-2.00006-9 [CrossRef] [Google Scholar]
- Base de données des Grosswetterlagen (GWL) et Grosswettertypen (GWT) : http://www.pik-potsdam.de/research/publications/pikreports/.files/pr119.pdf https://www.dwd.de/DE/leistungen/grosswetterlage/grosswetterlage.html [Google Scholar]
- Bulletin climatique quotidien sur la France (à partir du 1/1/1973) : https://donneespubliques.meteofrance.fr/donnees_libres/bulletins/BQA/20160427.pdf (exemple ici pour le 27 avril 2016) [Google Scholar]
- Cave des Vins de Bourgueil : http://cavedebourgueil.com/plugins/content/mavikthumbnails/thumbnails/300x225-images-stories-vigne-gele-27-avril-2016.jpg [Google Scholar]
- Institut Français de la vigne et du vin : https://www.vignevin.com/publications/cahiers-itineraires/ [Google Scholar]
- Interloire 2011 : https://www.vinsvaldeloire.fr/fr/interloire/ [Google Scholar]
- Journal régional La Nouvelle République : https://www.lanouvellerepublique.fr/indre-et-loire/commune/montlouis-sur-loire/week-end-de-portes-ouvertes-et-de-gel [Google Scholar]
- https://www.lanouvellerepublique.fr/indre-et-loire/touraine-branle-bas-de-combat-dans-les-vignes-contre-le-gel [Google Scholar]
- Le Vigneron du Val de Loire : https://www.vigneronduvaldeloire.fr/Gel-les-degats-se-precisent-en-Val-de-Loire_a87.html [Google Scholar]
- Magazine Viti : https://www.mon-viti.com/filinfo/viticulture/gel-dans-le-vignoble-du-val-de-loire-une-perteglobale-de-recolte-de-lordre-de [Google Scholar]
- Magazine Vitisphère : https://www.vitisphere.com/actualite-89345-Le-gel-comme-une-vilaine-habitude-en-Loire.htm [Google Scholar]
- Phénologie et climat de Météo-Suisse : https://www.meteosuisse.admin.ch/home/systemes-de-mesure-et-de-prevision/stations-au-sol/reseau-d-observations-phenologiques.html [Google Scholar]
- Publithèque de Météo-France : http://publitheque.meteo.fr/okapi/accueil/okapiWebPubli/index.jsp?idRubrique=clim [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.