Open Access
Review
Issue
Climatologie
Volume 15, 2018
Page(s) 22 - 45
DOI https://doi.org/10.4267/climatologie.1325
Published online 03 October 2019
  • Abegg B., Agrawala S., Crick F., de Montfalcon A., 2007. Climate change impacts and adaptation in winter tourism. In: Agrawala S. (ed.) Climate change in the European Alps. Adapting winter tourism and natural hazards management. OECD, Paris, 25–60. [Google Scholar]
  • Abermann J., Lambrecht A., Fischer A., Kuhn M., 2009. Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969–1997-2006). The Cryosphere, 3, 205. [CrossRef] [Google Scholar]
  • Acquaotta F., Fratianni S., Garzena D., 2015. Temperature changes in the North-Western Italian Alps from 1961 to 2010. Theoretical and Applied Climatology, 122, 619–634. [CrossRef] [Google Scholar]
  • Allen M., Antwi-Agyei P., Aragon-Durand F., Babiker M., Bertoldi P., Bind M., Brown S., Buckeridge M., Camilloni I., Cartwright A., 2019. Technical Summary : Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5° C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. [Google Scholar]
  • Auer I., Böhm R., Jurkovic A., Lipa W., Orlik A., Potzmann R., Schöner W., Ungersböck M., Matulla C., Briffa K., 2007. HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region. International Journal of Climatology, 27, 17–46. [CrossRef] [Google Scholar]
  • Barnett T.P., Adam J.C., Lettenmaier D.P., 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303. [CrossRef] [PubMed] [Google Scholar]
  • Bartolini E., Claps P., D’odorico P., 2009. Interannual variability of winter precipitation in the European Alps: relations with the North Atlantic Oscillation. Hydrology and Earth System Sciences, 13, 17–25. [CrossRef] [Google Scholar]
  • Bavay M., Grünewald T., Lehning M., 2013. Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland. Advances in Water Resources, 55, 4–16. [CrossRef] [Google Scholar]
  • Bavay M., Lehning M., Jonas T., Löwe H., 2009. Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrological Processes, 23, 95–108. [CrossRef] [Google Scholar]
  • Bednorz E., 2004. Snow cover in eastern Europe in relation to temperature, precipitation and circulation. International Journal of Climatology, 24, 591–601. [CrossRef] [Google Scholar]
  • Begert M., Schlegel T., Kirchhofer W., 2005. Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. International Journal of Climatology, 25, 65–80. [CrossRef] [Google Scholar]
  • Birsan M.-V., Molnar P., Burlando P., Pfaundler M., 2005. Streamflow trends in Switzerland. Journal of Hydrology, 314, 312–329. [CrossRef] [Google Scholar]
  • Blanchet J., Marty C., Lehning M., 2009. Extreme value statistics of snowfall in the Swiss Alpine region. Water Resources Research, 45. [CrossRef] [Google Scholar]
  • Bocchiola D., Diolaiuti G., 2010. Evidence of climate change within the Adamello Glacier of Italy. Theoretical and Applied Climatology, 100, 351–369. [CrossRef] [Google Scholar]
  • Böhm R., Auer I., Brunetti M., Maugeri M., Nanni T., Schöner W., 2001. Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. International Journal of Climatology, 21, 1779–1801. [CrossRef] [Google Scholar]
  • Bristow K.L., Campbell G.S., 1984. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology, 31, 159–166. [CrossRef] [Google Scholar]
  • Brown R.D., Mote P.W., 2009. The response of Northern Hemisphere snow cover to a changing climate. Journal of Climate,22, 2124–2145. [CrossRef] [Google Scholar]
  • Brown R.D., Robinson D.A., 2011. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. The Cryosphere, 5, 219–229. [CrossRef] [Google Scholar]
  • Brugnara Y., Brunetti M., Maugeri M., Nanni T., Simolo C., 2012. High-resolution analysis of daily precipitation trends in the central Alps over the last century. International Journal of Climatology, 32, 1406–1422. [CrossRef] [Google Scholar]
  • Brunetti M., Lentini G., Maugeri M., Nanni T., Auer I., Boehm R., Schoener W., 2009. Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. International Journal of Climatology, 29, 2197–2225. [CrossRef] [Google Scholar]
  • Cannone N., Diolaiuti G., Guglielmin M., Smiraglia C., 2008. Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps. Ecological Applications, 18, 637–648. [CrossRef] [Google Scholar]
  • Carbognani M., Tomaselli M., Petraglia A., 2014. Current vegetation changes in an alpine late snowbed community in the south-eastern Alps (N-Italy). Alpine Botany, 124, 105–113. [CrossRef] [Google Scholar]
  • Carlson B.Z., Corona M.C., Dentant C., Bonet R., Thuiller W., Choler P., 2017. Observed long-term greening of alpine vegetation—a case study in the French Alps. Environmental Research Letters, 12, 114006. [CrossRef] [Google Scholar]
  • Castebrunet H., Eckert N., Giraud G., Durand Y., Morin S., 2014. Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020–2050 and 2070–2100 periods. The Cryosphere, 8, 1673–1697. [CrossRef] [Google Scholar]
  • Ceppi P., Scherrer S.C., Fischer A.M., Appenzeller C., 2012. Revisiting Swiss temperature trends 1959–2008. International Journal of Climatology, 32, 203–213. [CrossRef] [Google Scholar]
  • CH2011, 2011. Swiss climate change scenarios CH2011. C2SM, MeteoSwiss, ETH, NCCR Climate, und OcCC, Zurich. [Google Scholar]
  • Chen X., Liang S., Cao Y., He T., Wang D., 2015. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Scientific reports, 5, 16820. [CrossRef] [Google Scholar]
  • Choi G., Robinson D.A., Kang S., 2010. Changing northern hemisphere snow seasons. Journal of Climate, 23, 5305–5310. [CrossRef] [Google Scholar]
  • Choler P., 2015. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences, 12, 3885–3897. [CrossRef] [Google Scholar]
  • Confortola G., Soncini A., Bocchiola D., 2013. Climate change will affect hydrological regimes in the Alps. Journal of Alpine Research |Revue de géographie alpine, 101, 3. [Google Scholar]
  • Corlett R.T., Westcott D.A., 2013. Will plant movements keep up with climate change? Trends in ecology & evolution, 28, 482–488. [CrossRef] [PubMed] [Google Scholar]
  • Crowley T.J., 2000. Causes of climate change over the past 1000 years. Science, 289, 270–277. [CrossRef] [Google Scholar]
  • Diolaiuti G., Bocchiola D., Vagliasindi M., D’agata C., Smiraglia C., 2012. The 1975–2005 glacier changes in Aosta Valley (Italy) and the relations with climate evolution. Progress in Physical Geography, 36, 764–785. [CrossRef] [Google Scholar]
  • Dumas D., 2013. Changes in temperature and temperature gradients in the French Northern Alps during the last century. Theoretical and Applied Climatology, 111, 223–233. [CrossRef] [Google Scholar]
  • Durand Y., Giraud G., Laternser M., Etchevers P., Mérindol L., Lesaffre B., 2009. Reanalysis of 47 years of climate in the French Alps (1958–2005): climatology and trends for snow cover. Journal of Applied Meteorology and Climatology, 48, 2487–2512. [CrossRef] [Google Scholar]
  • Elsasser H., Bürki R., 2002. Climate change as a threat to tourism in the Alps. Climate Research, 20, 253–257. [CrossRef] [Google Scholar]
  • Elsasser H., Messerli P., 2001. The vulnerability of the snow industry in the Swiss Alps. Mountain research and development, 21, 335–339. [CrossRef] [Google Scholar]
  • Erschbamer B., Unterluggauer P., Winkler E., Mallaun M., 2011. Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia, 83, 387. [Google Scholar]
  • Falk M., 2010. A dynamic panel data analysis of snow depth and winter tourism. Tourism Management, 31, 912–924. [CrossRef] [Google Scholar]
  • Falk M., 2013. Impact of long-term weather on domestic and foreign winter tourism demand. International Journal of Tourism Research, 15, 1–17. [CrossRef] [Google Scholar]
  • Farinotti D., Usselmann S., Huss M., Bauder A., Funk M., 2012. Runoff evolution in the Swiss Alps: projections for selected high-alpine catchments based on ENSEMBLES scenarios. Hydrological Processes, 26, 1909–1924. [CrossRef] [Google Scholar]
  • Fischer M., Huss M., Barboux C., Hoelzle M., 2014. The new Swiss Glacier Inventory SGI2010: relevance of using high-resolution source data in areas dominated by very small glaciers. Arctic, Antarctic, and Alpine Research, 46, 933–945. [CrossRef] [Google Scholar]
  • Foster G., Rahmstorf S., 2011. Global temperature evolution 1979–2010. Environmental Research Letters, 6, 044022. [CrossRef] [Google Scholar]
  • François H., Morin S., Lafaysse M., George-Marcelpoil E., 2014. Crossing numerical simulations of snow conditions with a spatially-resolved socio-economic database of ski resorts: A proof of concept in the French Alps. Cold Regions Science and Technology, 108, 98–112. [CrossRef] [Google Scholar]
  • Frei C., Schär C., 1998. A precipitation climatology of the Alps from high-resolution rain-gauge observations. International Journal of Climatology: A Journal of the Royal Meteorological Society, 18, 873–900. [CrossRef] [Google Scholar]
  • Frei E., Bodin J., Walther G.-R., 2010. Plant species’ range shifts in mountainous areas - all uphill from here? Botanica Helvetica, 120, 117–128. [CrossRef] [Google Scholar]
  • Frei P., Kotlarski S., Liniger M.A., Schär C., 2018. Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models. The Cryosphere, 12, 1. [CrossRef] [Google Scholar]
  • Gajić-Čapka M., 2011. Snow climate baseline conditions and trends in Croatia relevant to winter tourism. Theoretical and Applied Climatology, 105, 181–191. [CrossRef] [Google Scholar]
  • Gardent M., Rabatel A., Dedieu J.-P., Deline P., 2014. Multitemporal glacier inventory of the French Alps from the late 1960s to the late 2000s. Global and Planetary Change, 120, 24–37. [CrossRef] [Google Scholar]
  • Gehrig-Fasel J., Guisan A., Zimmermann N.E., 2007. Tree line shifts in the Swiss Alps: climate change or land abandonment? Journal of Vegetation Science, 18, 571–582. [CrossRef] [Google Scholar]
  • Gerdol R., Siffi C., Iacumin P., Gualmini M., Tomaselli M., 2013. Advanced snowmelt affects vegetative growth and sexual reproduction of Vaccinium myrtillus in a sub-alpine heath. Journal of Vegetation Science, 24, 569–579. [CrossRef] [Google Scholar]
  • Gonseth C., 2013. Impact of snow variability on the Swiss winter tourism sector: implications in an era of climate change. Climatic Change, 119, 307–320. [CrossRef] [Google Scholar]
  • Gottfried M., Pauli H., Futschik A., Akhalkatsi M., Barančok P., Alonso J.L.B., Coldea G., Dick J., Erschbamer B., Kazakis G., 2012. Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2, 111. [CrossRef] [Google Scholar]
  • Grignolio S., Rossi I., Bassano B., Parrini F., Apollonio M., 2004. Seasonal variations of spatial behaviour in female Alpine ibex (Capra ibex ibex) in relation to climatic conditions and age. Ethology Ecology & Evolution, 16, 255–264. [CrossRef] [Google Scholar]
  • Grytnes J.A., Kapfer J., Jurasinski G., Birks H.H., Henriksen H., Klanderud K., Odland A., Ohlson M., Wipf S., Birks H.J.B., 2014. Identifying the driving factors behind observed elevational range shifts on European mountains. Global Ecology and Biogeography, 23, 876–884. [CrossRef] [Google Scholar]
  • Haeberli W., Hoelzle M., Paul F., Zemp M., 2007. Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Annals of Glaciology, 46, 150–160. [CrossRef] [Google Scholar]
  • Hantel M., Ehrendorfer M., Haslinger A., 2000. Climate sensitivity of snow cover duration in Austria. International Journal of Climatology, 20, 615–640. [CrossRef] [Google Scholar]
  • Hantel M., Hirtl-Wielke L.M., 2007. Sensitivity of Alpine snow cover to European temperature. International Journal of Climatology, 27, 1265–1275. [CrossRef] [Google Scholar]
  • Hantel M., Maurer C., 2011. The median winter snowline in the Alps. Meteorologische Zeitschrift, 20, 267–276. [CrossRef] [Google Scholar]
  • Hantel M., Maurer C., Mayer D., 2012. The snowline climate of the Alps 1961–2010. Theoretical and Applied Climatology, 110, 517–537. [CrossRef] [Google Scholar]
  • Hanzer F., Förster K., Nemec J., Strasser U., 2018. Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach. Hydrology and Earth System Sciences, 22, 1593–1614. [CrossRef] [Google Scholar]
  • Harsch M.A., Hulme P.E., McGlone M.S., Duncan R.P., 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology letters, 12, 1040–1049. [CrossRef] [Google Scholar]
  • Helle T., Kojola I., 2008. Demographics in an alpine reindeer herd: effects of density and winter weather. Ecography, 31, 221–230. [CrossRef] [Google Scholar]
  • Hernández-Henríquez M.A., Déry S.J., Derksen C., 2015. Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971–2014. Environmental Research Letters, 10, 044010. [CrossRef] [Google Scholar]
  • Huelber K., Gottfried M., Pauli H., Reiter K., Winkler M., Grabherr G., 2006. Phenological responses of snowbed species to snow removal dates in the Central Alps: implications for climate warming. Arctic, Antarctic, and Alpine Research, 38, 99–103. [CrossRef] [Google Scholar]
  • Hülber K., Winkler M., Grabherr G., 2010. Intraseasonal climate and habitat-specific variability controls the flowering phenology of high alpine plant species. Functional Ecology, 24, 245–252. [CrossRef] [Google Scholar]
  • Hüsler F., Jonas T., Riffler M., Musial J.P., Wunderle S., 2014. A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data. The Cryosphere, 8, 73–90. [CrossRef] [Google Scholar]
  • Huss M., 2012. Extrapolating glacier mass balance to the mountain range scale: the European Alps 1900–2100. The Cryosphere Discuss.,6, 1117–1156. [CrossRef] [Google Scholar]
  • Imperio S., Bionda R., Viterbi R., Provenzale A., 2013. Climate change and human disturbance can lead to local extinction of Alpine rock ptarmigan: New insight from the Western Italian Alps. PloS ONE, 8, e81598. [CrossRef] [Google Scholar]
  • Inouye D.W., 2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89, 353–362. [CrossRef] [Google Scholar]
  • Inouye D.W., Morales M.A., Dodge G.J., 2002. Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): the roles of snowpack, frost, and La Nina, in the context of climate change. Oecologia, 130, 543–550. [CrossRef] [Google Scholar]
  • IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. [Google Scholar]
  • Jasper K., Calanca P., Gyalistras D., Fuhrer J., 2004. Differential impacts of climate change on the hydrology of two alpine river basins. Climate Research, 26, 113–129. [CrossRef] [Google Scholar]
  • Joly D., Bois B., Zakšek K., 2012. Rank-ordering of topographic variables correlated with temperature. Atmospheric and Climate Sciences, 2, 139–147. [CrossRef] [Google Scholar]
  • Jonas T., Rixen C., Sturm M., Stoeckli V., 2008a. How alpine plant growth is linked to snow cover and climate variability. Journal of Geophysical Research: Biogeosciences, 113, G03013. [Google Scholar]
  • Jonas T., Geiger F., Jenny H., 2008b. Mortality pattern of the Alpine chamois: the influence of snow–meteorological factors. Annals of Glaciology, 49, 56–62. [CrossRef] [Google Scholar]
  • Jones P., Lister D., Osborn T., Harpham C., Salmon M., Morice C., 2012. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research, 117, D05127. [Google Scholar]
  • Jump A.S., Penuelas J., 2005. Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Letters, 8, 1010–1020. [CrossRef] [Google Scholar]
  • Jylhä K., Fronzek S., Tuomenvirta H., Carter T.R., Ruosteenoja K., 2008. Changes in frost, snow and Baltic sea ice by the end of the twenty-first century based on climate model projections for Europe. Climatic Change, 86, 441–462. [CrossRef] [Google Scholar]
  • Klein G., Rebetez M., Rixen C., Vitasse Y., 2018. Unchanged risk of frost exposure for subalpine and alpine plants after snowmelt in Switzerland despite climate warming. International Journal of Biometeorology, 62, 1755–1762. [CrossRef] [Google Scholar]
  • Klein G., Vitasse Y., Rixen C., Marty C., Rebetez M., 2016. Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Climatic Change, 139, 637–649. [CrossRef] [Google Scholar]
  • Koenig U., Abegg B., 1997. Impacts of climate change on winter tourism in the Swiss Alps. Journal of Sustainable Tourism, 5, 46–58. [CrossRef] [Google Scholar]
  • Körner C., 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. With 47 tables, Springer Science & Business Media. [Google Scholar]
  • Korslund L., Steen H., 2006. Small rodent winter survival: snow conditions limit access to food resources. Journal of Animal Ecology, 75, 156–166. [CrossRef] [Google Scholar]
  • Lamprecht A., Semenchuk P.R., Steinbauer K., Winkler M., Pauli H., 2018. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytologist, 220, 447–459. [CrossRef] [Google Scholar]
  • Laternser M., Schneebeli M., 2003. Long-term snow climate trends of the Swiss Alps (1931–99). International Journal of Climatology, 23, 733–750. [CrossRef] [Google Scholar]
  • Lenoir J., Gégout J.-C., Marquet P., De Ruffray P., Brisse H., 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768–1771. [CrossRef] [PubMed] [Google Scholar]
  • Linsbauer A., Paul F., Machguth H., Haeberli W., 2013. Comparing three different methods to model scenarios of future glacier change in the Swiss Alps. Annals of Glaciology, 54, 241–253. [CrossRef] [Google Scholar]
  • Livensperger C., Steltzer H., Darrouzet-Nardi A., Sullivan P.F., Wallenstein M., Weintraub M.N., 2016. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth. AoB Plants, 8, plw021. [CrossRef] [Google Scholar]
  • López-Moreno J., García-Ruiz J.M., 2004. Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees/Influence de l’accumulation et de la fonte de la neige sur les écoulements dans les Pyrénées centrales espagnoles. Hydrological Sciences Journal, 49, 787–802. [Google Scholar]
  • López-Moreno J., Revuelto J., Gilaberte M., Morán-Tejeda E., Pons M., Jover E., Esteban P., García C., Pomeroy J.. 2014, The effect of slope aspect on the response of snowpack to climate warming in the Pyrenees. Theoretical and Applied Climatology, 117, 207–219. [CrossRef] [Google Scholar]
  • Magnusson J., Jonas T., López-Moreno I., Lehning M., 2010. Snow cover response to climate change in a high alpine and half-glacierized basin in Switzerland. Hydrology Research, 41, 230–240. [CrossRef] [Google Scholar]
  • Marke T., Strasser U., Hanzer F., Stötter J., Wilcke R.A.I., Gobiet A., 2015. Scenarios of future snow conditions in Styria (Austrian Alps). Journal of Hydrometeorology, 16, 261–277. [CrossRef] [Google Scholar]
  • Marty C., 2008. Regime shift of snow days in Switzerland. Geophysical Research Letters, 35, L12501. [CrossRef] [Google Scholar]
  • Marty C., Blanchet J., 2012. Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics. Climatic Change, 111, 705–721. [CrossRef] [Google Scholar]
  • Marty C., Meister R., 2012. Long-term snow and weather observations at Weissfluhjoch and its relation to other high-altitude observatories in the Alps. Theoretical and Applied Climatology, 110, 573–583. [CrossRef] [Google Scholar]
  • Marty C., Tilg A.-M., Jonas T., 2017a. Recent evidence of large-scale receding snow water equivalents in the European Alps. Journal of Hydrometeorology, 18, 1021–1031. [CrossRef] [Google Scholar]
  • Marty C., Schlögl S., Bavay M., Lehning M., 2017b. How much can we save? Impact of different emission scenarios on future snow cover in the Alps. The Cryosphere, 11, 517–529. [CrossRef] [Google Scholar]
  • Matteodo M., Ammann K., Verrecchia E.P., Vittoz P., 2016. Snowbeds are more affected than other subalpine–alpine plant communities by climate change in the Swiss Alps. Ecology and Evolution, 6, 6969–6982. [CrossRef] [Google Scholar]
  • Matteodo M., Wipf S., Stöckli V., Rixen C., Vittoz P., 2013. Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environmental Research Letters, 8, 024043. [CrossRef] [Google Scholar]
  • Mignatti A., Casagrandi R., Provenzale A., von Hardenberg A., Gatto M., 2012. Sex-and age-structured models for Alpine ibex Capra ibex ibex population dynamics. Wildlife Biology,18, 318–333. [CrossRef] [Google Scholar]
  • Mountain Research Initiative EDWWG, 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5, 424. [CrossRef] [Google Scholar]
  • Nicolet G., Eckert N., Morin S., Blanchet J., 2018. Assessing climate change impact on the spatial dependence of extreme snow depth maxima in the French Alps. Water Resources Research, 54, 7820–7840. [CrossRef] [Google Scholar]
  • Novoa C., Astruc G., Desmet J.-F., Besnard A., 2016. No short-term effects of climate change on the breeding of Rock Ptarmigan in the French Alps and Pyrenees. Journal of Ornithology, 157, 797–810. [CrossRef] [Google Scholar]
  • Novoa C., Besnard A., Brenot J.F., Ellison L.N., 2008. Effect of weather on the reproductive rate of Rock Ptarmigan Lagopus muta in the eastern Pyrenees. Ibis, 150, 270–278. [CrossRef] [Google Scholar]
  • Palacio S., Lenz A., Wipf S., Hoch G., Rixen C., 2015. Bud freezing resistance in alpine shrubs across snow depth gradients. Environmental and Experimental Botany, 118, 95–101. [CrossRef] [Google Scholar]
  • Park S.-H., Lee M.-J., Jung H.-S., 2012. Analysis on the snow cover variations at Mt. Kilimanjaro using Landsat satellite images. Korean Journal of Remote Sensing, 28, 409–420. [CrossRef] [Google Scholar]
  • Pauli H., Gottfried M., Reiter K., Klettner C., Grabherr G., 2007. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA* master site Schrankogel, Tyrol, Austria. Global Change Biology, 13, 147–156. [CrossRef] [Google Scholar]
  • Pederson G.T., Betancourt J.L., McCabe G.J., 2013. Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, US. Geophysical Research Letters, 40, 1811–1816. [CrossRef] [Google Scholar]
  • Pellicciotti F., Bauder A., Parola M., 2010. Effect of glaciers on streamflow trends in the Swiss Alps. Water Resources Research, 46, W10522. [CrossRef] [Google Scholar]
  • Peng S., Piao S., Ciais P., Friedlingstein P., Zhou L., Wang T., 2013. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environmental Research Letters, 8, 014008. [CrossRef] [Google Scholar]
  • Pepin N., Bradley R., Diaz H., Baraër M., Caceres E., Forsythe N., Fowler H., Greenwood G., Hashmi M., Liu X., 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5, 424. [CrossRef] [Google Scholar]
  • Pepin N., Daly C., Lundquist J., 2011. The influence of surface versus free-air decoupling on temperature trend patterns in the western United States. Journal of Geophysical Research: Atmospheres, 116. [CrossRef] [Google Scholar]
  • Pepin N., Lundquist J., 2008. Temperature trends at high elevations: patterns across the globe. Geophysical Research Letters,35, L14701. [CrossRef] [Google Scholar]
  • Petraglia A., Tomaselli M., Bon M.P., Delnevo N., Chiari G., Carbognani M., 2014. Responses of flowering phenology of snowbed plants to an experimentally imposed extreme advanced snowmelt. Plant Ecology, 215, 759–768. [CrossRef] [Google Scholar]
  • Plaut G., Simonnet E., 2001. Large-scale circulation classification, weather regimes, and local climate over France, the Alps and Western Europe. Climate Research, 17, 303–324. [CrossRef] [Google Scholar]
  • Pons M., López-Moreno J.I., Rosas-Casals M., Jover È., 2015. The vulnerability of Pyrenean ski resorts to climate-induced changes in the snowpack. Climatic Change, 131, 591–605. [CrossRef] [Google Scholar]
  • Pütz M., Gallati D., Kytzia S., Elsasser H., Lardelli C., Teich M., Waltert F., Rixen C., 2011. Winter tourism, climate change, and snowmaking in the Swiss Alps: tourists’ attitudes and regional economic impacts. Mountain Research and Development, 31, 357–362. [CrossRef] [Google Scholar]
  • Rabatel A., Letréguilly A., Dedieu J., Eckert N., 2013. Changes in glacier equilibrium-line altitude in the western Alps from 1984 to 2010: evaluation by remote sensing and modeling of the morpho-topographic and climate controls. The Cryosphere, 7, 1455–1471. [CrossRef] [Google Scholar]
  • Radić V., Bliss A., Beedlow A.C., Hock R., Miles E., Cogley J.G., 2014. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics, 42, 37–58. [CrossRef] [Google Scholar]
  • Rammig A., Jonas T., Zimmermann N., Rixen C., 2010. Changes in alpine plant growth under future climate conditions. Biogeosciences, 7, 2013. [CrossRef] [Google Scholar]
  • Rangwala I., Miller J.R., 2012. Climate change in mountains: a review of elevation-dependent warming and its possible causes. Climatic Change, 114, 527–547. [CrossRef] [Google Scholar]
  • Rebetez M., 1996. Seasonal relationship between temperature, precipitation and snow cover in a mountainous region. Theoretical and Applied Climatology, 54, 99–106. [CrossRef] [Google Scholar]
  • Rebetez M., Reinhard M., 2008. Monthly air temperature trends in Switzerland 1901–2000 and 1975–2004. Theoretical and Applied Climatology, 91, 27–34. [CrossRef] [Google Scholar]
  • Reid P.C., Hari R.E., Beaugrand G., Livingstone D.M., Marty C., Straile D., Barichivich J., Goberville E., Adrian R., Aono Y., 2016. Global impacts of the 1980s regime shift. Global Change Biology, 22, 682–703. [CrossRef] [PubMed] [Google Scholar]
  • Reveillet M., Vincent C., Six D., Rabatel A., 2017. Which empirical model is best suited to simulate glacier mass balances? Journal of Glaciology, 63, 39–54. [CrossRef] [Google Scholar]
  • Rixen C., Dawes M.A., Wipf S., Hagedorn F., 2012. Evidence of enhanced freezing damage in treeline plants during six years of CO2 enrichment and soil warming. Oikos, 121, 1532–1543. [CrossRef] [Google Scholar]
  • Rixen C., Schwoerer C., Wipf S., 2010. Winter climate change at different temporal scales in Vaccinium myrtillus, an Arctic and alpine dwarf shrub. Polar Research, 29, 85–94. [CrossRef] [Google Scholar]
  • Rixen C., Teich M., Lardelli C., Gallati D., Pohl M., Pütz M., Bebi P., 2011. Winter tourism and climate change in the Alps: an assessment of resource consumption, snow reliability, and future snowmaking potential. Mountain Research and Development, 31, 229–236. [CrossRef] [Google Scholar]
  • Robinson B.G., Merrill E.H., 2012. The influence of snow on the functional response of grazing ungulates. Oikos, 121, 28–34. [CrossRef] [Google Scholar]
  • Rolland C., 2003. Spatial and seasonal variations of air temperature lapse rates in Alpine regions. Journal of Climate, 16, 1032–1046. [CrossRef] [Google Scholar]
  • Rousselot M., Durand Y., Giraud G., Mérindol L., Dombrowski-Etchevers I., Déqué M., Castebrunet H., 2012. Statistical adaptation of ALADIN RCM outputs over the French Alps-application to future climate and snow cover. The Cryosphere, 6, 785–805. [CrossRef] [Google Scholar]
  • Sanchez-Lorenzo A., Wild M., 2012. Decadal variations in estimated surface solar radiation over Switzerland since the late 19th century. Atmospheric Chemistry and Physics, 12, 8635–8644. [CrossRef] [Google Scholar]
  • Scherrer S., Ceppi P., Croci-Maspoli M., Appenzeller C., 2012. Snow-albedo feedback and Swiss spring temperature trends. Theoretical and Applied Climatology, 110, 509–516. [CrossRef] [Google Scholar]
  • Scherrer S.C., Appenzeller C., 2006. Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Climate Research, 32, 187–199. [CrossRef] [Google Scholar]
  • Scherrer S.C., Appenzeller C., Laternser M., 2004. Trends in Swiss Alpine snow days: The role of local-and large-scale climate variability. Geophysical Research Letters, 31, L13215. [CrossRef] [Google Scholar]
  • Scherrer S.C., Begert M., Croci-Maspoli M., Appenzeller C., 2016. Long series of Swiss seasonal precipitation: regionalization, trends and influence of large-scale flow. International Journal of Climatology, 36, 3673–3689. [CrossRef] [Google Scholar]
  • Scherrer S.C., Wüthrich C., Croci-Maspoli M., Weingartner R., Appenzeller C., 2013. Snow variability in the Swiss Alps 1864–2009. International Journal of Climatology, 33, 3162–3173. [CrossRef] [Google Scholar]
  • Schmidli J., Frei C., 2005. Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. International Journal of Climatology, 25, 753–771. [CrossRef] [Google Scholar]
  • Schmucki E., Marty C., Fierz C., Lehning M., 2015. Simulations of 21st century snow response to climate change in Switzerland from a set of RCMs. International Journal of Climatology, 35, 3262–3273. [CrossRef] [Google Scholar]
  • Schmucki E., Marty C., Fierz C., Weingartner R., Lehning M., 2017. Impact of climate change in Switzerland on socioeconomic snow indices. Theoretical and Applied Climatology, 127, 875–889. [CrossRef] [Google Scholar]
  • Schöner W., Auer I., Böhm R., 2009. Long term trend of snow depth at Sonnblick (Austrian Alps) and its relation to climate change. Hydrological Processes: An International Journal, 23, 1052–1063. [CrossRef] [Google Scholar]
  • Schöner W., Koch R., Matulla C., Marty C., Tilg A.M., 2019. Spatiotemporal patterns of snow depth within the Swiss-Austrian Alps for the past half century (1961 to 2012) and linkages to climate change. International Journal of Climatology, 39, 1589–1603. [CrossRef] [Google Scholar]
  • Seager R., Kushnir Y., Nakamura J., Ting M., Naik N., 2010. Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophysical Research Letters, 37, L14703. [CrossRef] [Google Scholar]
  • Serquet G., Marty C., Dulex J.P., Rebetez M., 2011. Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland. Geophysical Research Letters, 38, L07703. [CrossRef] [Google Scholar]
  • Serquet G., Marty C., Rebetez M., 2013. Monthly trends and the corresponding altitudinal shift in the snowfall/precipitation day ratio. Theoretical and Applied Climatology, 114, 437–444. [CrossRef] [Google Scholar]
  • Sevruk B., 1997. Regional dependency of precipitation-altitude relationship in the Swiss Alps. Climatic change at high elevation sites. Springer, 123–137. [CrossRef] [Google Scholar]
  • Sharma V., Mishra V.D., Joshi P.K., 2013. Implications of climate change on streamflow of a snow-fed river system of the Northwest Himalaya. Journal of Mountain Science, 10, 574–587. [CrossRef] [Google Scholar]
  • Sherwood J., Debinski D., Caragea P., Germino M., 2017. Effects of experimentally reduced snowpack and passive warming on montane meadow plant phenology and floral resources. Ecosphere, 8(3), e01745. [CrossRef] [Google Scholar]
  • Spandre P., François H., Morin S., George-Marcelpoil E., 2015. Dynamique de la neige de culture dans les Alpes Françaises. Contexte climatique et état des lieux. Journal of Alpine Research | Revue de géographie alpine, 103, 2. [Google Scholar]
  • Steger C., Kotlarski S., Jonas T., Schär C., 2013. Alpine snow cover in a changing climate: a regional climate model perspective. Climate Dynamics, 41: 735–754. [CrossRef] [Google Scholar]
  • Steiger R., 2010. The impact of climate change on ski season length and snowmaking requirements in Tyrol, Austria. Climate Research, 43, 251–262. [CrossRef] [Google Scholar]
  • Steiger R., Abegg B., 2018. Ski areas’ competitiveness in the light of climate change: Comparative analysis in the Eastern Alps. Tourism in Transitions. Springer, 187–199. [CrossRef] [Google Scholar]
  • Steiger R., Mayer M., 2008. Snowmaking and climate change: Future options for snow production in Tyrolean ski resorts. Mountain Research and Development, 28, 292–298. [CrossRef] [Google Scholar]
  • Steiger R., Stötter J., 2013. Climate change impact assessment of ski tourism in Tyrol. Tourism Geographies, 15, 577–600. [CrossRef] [Google Scholar]
  • Steinbauer M.J., Grytnes J.-A., Jurasinski G., Kulonen A., Lenoir J., Pauli H., Rixen C., Winkler M., Bardy-Durchhalter M., Barni E., 2018. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556, 231–234. [CrossRef] [Google Scholar]
  • Tafani M., Cohas A., Bonenfant C., Gaillard J.-M., Allainé D., 2013. Decreasing litter size of marmots over time: a life history response to climate change? Ecology, 94, 580–586. [CrossRef] [Google Scholar]
  • Terzago S., Fratianni S., Cremonini R., 2013. Winter precipitation in Western Italian Alps (1926–2010). Meteorology and Atmospheric Physics, 119, 125–136. [CrossRef] [Google Scholar]
  • Thibert E., Eckert N., Vincent C., 2013. Climatic drivers of seasonal glacier mass balances: an analysis of 6 decades at Glacier de Sarennes (French Alps). The Cryosphere, 7, 47–66. [CrossRef] [Google Scholar]
  • Tudoroiu M., Eccel E., Gioli B., Gianelle D., Schume H., Genesio L., Miglietta F., 2016. Negative elevation-dependent warming trend in the Eastern Alps. Environmental Research Letters, 11, 044021. [CrossRef] [Google Scholar]
  • Valt M., Cianfarra P., 2010. Recent snow cover variability in the Italian Alps. Cold Regions Science and Technology, 64, 146–157. [CrossRef] [Google Scholar]
  • Van Oldenborgh G.J., Drijfhout S., Van Ulden A., Haarsma R., Sterl A., Severijns C., Hazeleger W., Dijkstra H., 2009. Western Europe is warming much faster than expected. Climate of the Past, 5, 1–12. [CrossRef] [Google Scholar]
  • Verfaillie D., Lafaysse M., Déqué M., Eckert N., Lejeune Y., Morin S., 2018. Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps. The Cryosphere, 12, 1249–1271. [CrossRef] [Google Scholar]
  • Vincent C., 2002. Influence of climate change over the 20th century on four French glacier mass balances. Journal of Geophysical Research, 107(D19), 4375. [CrossRef] [Google Scholar]
  • Vitasse Y., Rebetez M., Filippa G., Cremonese E., Klein G., Rixen C., 2017. Hearing’alpine plants growing after snowmelt: ultrasonic snow sensors provide long-term series of alpine plant phenology. International Journal of Biometeorology, 61, 349–361. [CrossRef] [Google Scholar]
  • Vittoz P., Randin C., Dutoit A., Bonnet F., Hegg O., 2009. Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Global Change Biology, 15, 209–220. [CrossRef] [Google Scholar]
  • Walther G.-R., Beißner S., Burga C.A., 2005. Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16, 541–548. [CrossRef] [Google Scholar]
  • Wheeler J., Hoch G., Cortés A.J., Sedlacek J., Wipf S., Rixen C., 2014. Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia, 175, 219–229. [CrossRef] [Google Scholar]
  • Wheeler J.A., Cortes A.J., Sedlacek J., Karrenberg S., Kleunen M., Wipf S., Hoch G., Bossdorf O., Rixen C., 2016. The snow and the willows: earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea. Journal of Ecology, 104, 1041–1050. [CrossRef] [Google Scholar]
  • Wielke L.-M., Haimberger L., Hantel M., 2004. Snow cover duration in Switzerland compared to Austria. Meteorologische Zeitschrift, 13, 13–17. [CrossRef] [Google Scholar]
  • Winkler D.E., Butz R.J., Germino M.J., Reinhardt K., Kueppers L.M., 2018. Snowmelt timing regulates community composition, phenology, and physiological performance of alpine plants. Frontiers in Plant Science, 9, 1140. [CrossRef] [Google Scholar]
  • Wipf S., Rixen C., 2010. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Research, 29, 95–109. [CrossRef] [Google Scholar]
  • Wipf S., Stöckli V., Herz K., Rixen C., 2013. The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecology & Diversity, 6, 447–455. [CrossRef] [Google Scholar]
  • Wipf S., Stoeckli V., Bebi P., 2009. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change, 94, 105–121. [CrossRef] [Google Scholar]
  • Wolfsegger C., Gössling S., Scott D., 2008. Climate change risk appraisal in the Austrian ski industry. Tourism Review International, 12, 13–23. [CrossRef] [Google Scholar]
  • Xu Y., Ramanathan V., Washington W., 2016. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols. Atmospheric Chemistry and Physics, 16, 1303–1315. [CrossRef] [Google Scholar]
  • Zampieri M., Scoccimarro E., Gualdi S., 2013. Atlantic influence on spring snowfall over the Alps in the past 150 years. Environmental Research Letters, 8, 034026. [CrossRef] [Google Scholar]
  • Zemp M., Frey H., Gärtner-Roer I., Nussbaumer S.U., Hoelzle M., Paul F., Haeberli W., Denzinger F., Ahlstrøm A.P., Anderson B., 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61, 745–762. [CrossRef] [Google Scholar]
  • Zemp M., Haeberli W., Hoelzle M., Paul F., 2006. Alpine glaciers to disappear within decades? Geophysical Research Letters, 33. [CrossRef] [Google Scholar]
  • Zierl B., Bugmann H., 2005. Global change impacts on hydrological processes in Alpine catchments. Water Resources Research, 41, W02028. [CrossRef] [Google Scholar]
  • Zimmermann N., Gebetsroither E., Züger J., Schmatz D., Psomas A., 2013. Future Climate of the European Alps, Management Strategies to Adapt Alpine Space Forests to Climate Change Risks. Gillian.Ann. Cerbu, Marc. Hanewinkel, Giacomo. Gerosa and Robert. Jandl. IntechOpen. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.