Open Access
Issue
Climatologie
Volume 15, 2018
Page(s) 1 - 21
DOI https://doi.org/10.4267/climatologie.1314
Published online 03 October 2019
  • Ahas R., Aasa A., Menzel A., Fedotova V. G., Scheifinger H., 2002: Changes in European spring phenology. International Journal of Climatology, 22 (14), 1727–1738. https://doi.org/10.1002/joc.818. [CrossRef] [Google Scholar]
  • Anderson J. V., Horvath D. P., Chao W. S., Foley M. E., 2010: Bud dormancy in perennial plants: a mechanism for survival. In Dormancy and resistance in harsh environments (pp. 69–90), Springer, Berlin, Heidelberg. [CrossRef] [Google Scholar]
  • Badeck F.-W., Bondeau A., Böttcher K., Doktor D., Lucht W., Schaber J., Sitch S., 2004: Responses of spring phenology to climate change. New Phytologist, 162 (2), 295–309. https://doi.org/10.1111/j.1469-8137.2004.01059.x. [CrossRef] [Google Scholar]
  • Barnston A. G., Livezey R. E., 1987: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Monthly Weather Review, 115 (6), 1083–1126. https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2. [CrossRef] [Google Scholar]
  • Bartomeus I., Ascher J. S., Wagner D., Danforth B. N., Colla S., Kornbluth S., Winfree R., 2011: Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences, 108 (51), 20645–20649. [CrossRef] [Google Scholar]
  • Bartomeus I., Park M. G., Gibbs J., Danforth B. N., Lakso A. N., Winfree R., 2013: Biodiversity ensures plant–pollinator phenological synchrony against climate change. Ecology letters, 16 (11), 1331–1338. [CrossRef] [Google Scholar]
  • Bigot S., Moron V., Melice J. L., Servat E., Paturel J. E., 1998: Fluctuations pluviométriques et analyse fréquentielle de la pluviosité en Afrique centrale. IAHS Publication, 71–78. [Google Scholar]
  • Celton J. M., Martinez S., Jammes M.-J., Bechti A., Salvi S., Legave J. M., Costes E., 2011: Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytologist, 192 (2), 378–392. [CrossRef] [Google Scholar]
  • Chmielewski F.-M., Müller A., Bruns E. 2004: Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agricultural and Forest Meteorology, 121 (1), 69–78. https://doi.org/10.1016/S0168-1923(03)00161-8. [CrossRef] [Google Scholar]
  • Chmielewski F.-M., Rötzer T. 2001: Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108 (2), 101–112. [CrossRef] [Google Scholar]
  • Chmielewsik F.-M., Rötzer T., 2002: Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Climate Research, 19, 257–264. [CrossRef] [Google Scholar]
  • Chmielewski F.-M., Blümel K., Henniges Y., Blanke M., Weber R. W., Zoth M., 2011: Phenological models for the beginning of apple blossom in Germany. Meteorologische Zeitschrift, 20 (5), 487–496. [CrossRef] [Google Scholar]
  • DWD Climate Data Center (CDC), 2018a: Historical daily station observations (temperature, pressure, precipitation, sunshine duration, etc.) for Germany, version v006. [Google Scholar]
  • DWD Climate Data Center (CDC), 2018b: Phenological observations of fruit-bearing plants from beginning of sprouting to ripening, also falling of leaves for some species (annual reporters, historical), Version v004 [Google Scholar]
  • DWD Climate Data Center (CDC), 2018c: Phenological observations of fruit-bearing plants from beginning of sprouting to ripening, also falling of leaves for some species (immediate reporters, historical), Version v004 [Google Scholar]
  • Englert C., Pesch R., Schmidt G., Schröder W., 2008: Analysis of spatially and seasonally varying plant phenology in Germany. Geospatial Crossroads GI_Forum, 8, 81–89. [Google Scholar]
  • Ferree D. C., Warrington I. J., 2003: Apples: botany, production, and uses. Wallingford, UK: CABI Publishing. [CrossRef] [Google Scholar]
  • Figura S., Livingstone D. M., Hoehn E., Kipfer R., 2011: Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophysical Research Letters 38 (23). [CrossRef] [Google Scholar]
  • Hari R. E., Livingstone D. M., Siber R., Burkhardt-Holm P., Güttinger H., 2006: Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Global Change Biology 12 (1), 10–26. [CrossRef] [Google Scholar]
  • Heide O. M. 2008: Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Scientia Horticulturae, 115, 309–314. [CrossRef] [Google Scholar]
  • Heide O. M., Prestrud A. K., 2005: Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology, 25 (1), 109–114. [CrossRef] [Google Scholar]
  • Hurrell J. W., 1995: Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269 (5224), 676–679. [CrossRef] [PubMed] [Google Scholar]
  • IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. [Google Scholar]
  • Kemp P. R., Cornelius J. M., Reynolds J. F., 1994: Temporal discontinuities in precipitation in the central North American prairie. International Journal of Climatology, 14 (5), 539–557. [CrossRef] [Google Scholar]
  • Körner C., Basler D., 2010: Phenology under global warming. Science, 327 (5972), 1461–1462. https://doi.org/10.1126/science.1186473. [CrossRef] [Google Scholar]
  • Kwolek, A. V. A., Woolhouse H. W., 1982: Studies on the dormancy of Calluna-Vulgaris (L) Hull, during winter – the effect of photoperiod and temperature on the induction of dormancy and the annual cycle of development. Annals of Botany, 49 (3), 367–376. [CrossRef] [Google Scholar]
  • Legave J. M., Farrera I., Aleras T., Calleja M., 2008: Selecting models of apple flowering time and understanding how global warming has had an impact on this trait. Journal of Horticultural Science & Biotechnology, 83 (1), 76–84. [CrossRef] [Google Scholar]
  • Legave J. M., Blanke M., Chrisen D., Giovannini D., Mathieu V., Oger R., 2013: A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in Western Europe. International Journal of Biometeorology, 57, 317–331. DOI 10.1007/s00484-012-0551-9. [CrossRef] [Google Scholar]
  • Li C., Junttila O., Ernstsen A., Heino P., Palva E. T., 2003: Photoperiodic control of growth, cold acclimation and dormancy development in silver birch (Betula pendula) ecotypes. Physiologia Plantarum, 117, 206–212. [CrossRef] [Google Scholar]
  • Lopes A. V., Chiang J. C. H., Thompson S. A., Dracup J. A., 2016: Trend and uncertainty in spatial-temporal patterns of hydrological droughts in the Amazon basin. Geophys. Research Letters, 43, 3307–3316, doi: 10.1002/2016GL067738. [CrossRef] [Google Scholar]
  • Mariani L., Parisi S. G., Cola G., Failla O., 2012: Climate change in Europe and effects on thermal resources for crops. International Journal of Biometeorology, 56, 1123. https://doi.org/10.1007/s00484-012-0528-8. [CrossRef] [PubMed] [Google Scholar]
  • Memmot J., Craze P. G., Waser N. M., Price M. V., 2007: Global warming and the disruption of plant-pollinator interactions. Ecology Letters, 10 (8), 710–717. ISSN1461-023X. [CrossRef] [Google Scholar]
  • Menzel A., 2003: Plant Phenological Anomalies in Germany and their Relation to Air Temperature and NAO. Climatic Change, 57 (3), 243–263. doi.org/10.1023/A:1022880418362. [CrossRef] [Google Scholar]
  • Menzel A., Estrella N., Fabian P., 2001: Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biology, 7, 657–666. doi:10.1111/j.1365-2486.2001.00430.x. [Google Scholar]
  • Menzel A., Sparks T. H., Estrella N., , Eckhardt S., , 2005: ‘SSW to NNE’–North Atlantic Oscillation affects the progress of seasons across Europe. Global Change Biology, 11 (6), 909–918. [CrossRef] [Google Scholar]
  • Menzel A., Sparks T. H., Estrella N., Koch E., Aasa A., Ahas R., Alm-Kübler K., Bissolli K., Braslavská O., Briede A., Chmielewski F. M., Crepinsek Z., Curnel Y., Dahl A., Defila C., Donnelly A., Filella Y., Jatczak K., Mage F., Mestre A., Nordli O., Penuelas J., Pirinen P., Remisova V., Scheifinger H., Striz M., Susnik A., Van Vliet H., Wielgolaski F. E., ZACH S., ZUST A., 2006: European phenological response to climate change matches the warming pattern. Global Change Biology 12, 1969–1976. doi: 10.1111/j.1365-2486.2006.01193.x. [CrossRef] [Google Scholar]
  • Moron V., Oueslati B., Pohl B., Rome S., Janicot S., 2016: Trends of mean temperatures and warm extremes in northern tropical Africa (1961–2014) from observed and PPCA-reconstructed time series. Journal of Geophysical Research, Atmospheres, 121 (10), 5298–5319. [CrossRef] [Google Scholar]
  • Naor A., Flaishman M., Stern R., Moshe A., Erez A., 2003: Temperature effects on dormancy completion of vegetative buds in apple. Journal of the American Society for Horticultural Science, 128 (5), 636–641. [CrossRef] [Google Scholar]
  • Reid, P. C., Hari, R. E., Beaugrand, G., Livingstone, D. M., Marty, C., Straile, D., Barichivich, J., Goberville, E., Adrian, R., Aono Y., Brown R., Foster J., Groisman P., Hélaouët P., Hsu H., Kirby R., Knight J., Kraberg A., Li J., Lo T.-T., Myeni R. B., North R. P., Pounds J. A., Sparks T., Stübi R., Tian Y., Wiltshire K. H., Xiao D., Zhu Z., 2016: Global impacts of the 1980s regime shift. Global Change Biology, 22 (2), 682–703. [CrossRef] [PubMed] [Google Scholar]
  • Richard Y., Castel T., Bois B., Cuccia C., Marteau R., Rossi A., Thevenin D., Toussaint H., 2014: Évolution des températures observées en Bourgogne (1961–2011). Bourgogne Nature, 19, 110–117. [Google Scholar]
  • Roweis S. T., 1998: EM algorithms for PCA and SPCA. Advances in neural information processing systems, 626–632. [Google Scholar]
  • Scheifinger H., Menzel A., Koch E., Peter C., Ahas R., 2002: Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe. International Journal of Climatology, 22 (14), 1739–1755. [CrossRef] [Google Scholar]
  • Schlüter M. H., Merico A., Wiltshire K. H., Greve W., Von Storch H., 2008: A statistical analysis of climate variability and ecosystem response in the German Bight. Ocean Dynamics, 58 (3–4), 169. [CrossRef] [Google Scholar]
  • Schnelle F., 1948: Studien zur Phänologie Mitteleuropas. Berichte des Deutschen Wetterdienstes in der US-Zone Nr. 2, 28pp. [Google Scholar]
  • Tome, A. R., Miranda P. M. A., 2005: Continuous partial trends and low-frequency oscillations of time series. Nonlinear Processes in Geophysics, European Geosciences Union (EGU), 12 (4), 451–460.<hal-00302594>. [CrossRef] [Google Scholar]
  • Tukey J. W., 1977: Exploratory Data Analysis. Addison-Wesley, Publishing Company Reading, XVI , 688 S. [Google Scholar]
  • Verbeek J. J., Vlassis N., Kröse B., 2002: Coordinating mixtures of probabilistic principal component analyzers. Netherlands: Computer Science Institute, University of Amsterdam. [Google Scholar]
  • Vitasse Y., Delzon S., Dufrêsne E., Pontailler J. Y., Louvet J. M., Kremer A., Michalet R., 2009: Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? Agricultural and forest meteorology, 149 (5), 735–744. doi:10.1016/j.agrformet.2008.10.019 [CrossRef] [Google Scholar]
  • Walther, G.-R., Post E., Convey P., Menzel A., Parmesan C., Beebee T. J. C., Fromentin J. M., Hoegh-Guldberg O., Bairlein F., 2002: Ecological responses to recent climate change. Nature, 416 (6879), 389–395. https://doi.org/10.1038/416389a. [CrossRef] [PubMed] [Google Scholar]
  • Werner P. C., Gerstengarbe F., Frädrich K. and Österle H., 2000: Recent climate change in the North Atlantic/European sector. International Journal of Climatology, 20, 463–471. doi:10.1002/(SICI)1097-0088(200004)20:5<463::AID-JOC483>3.0.CO;2-T. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.