Open Access
Volume 7, 2010
Page(s) 39 - 55
Published online 09 October 2015
  • Bechtold P., Bazile E., Guichard F., Mascart P. et Richard E., 2001 : A mass flux convection scheme for regional and global models. Quaterly J. Roy. Meteor. Soc., 127, 869–886. [CrossRef] [Google Scholar]
  • Bigot S., Brou Y. T., Oszwald J. et Diedhiou A., 2005 : Facteurs de la variabilité pluviométrique en Côte d’Ivoire et relations avec certaines modifications environnementales. Sécheresse, 5, 5–13. [Google Scholar]
  • Brasseur O., Tricot C., Ntezimana V., Gallee H. et Schayes G., 1998 : Importance of the convective adjustment scheme in the simulation of the diurnal convective activity in Africa. Conference on tropical climatology, meteorology and hydrology, 18, 299–312. [Google Scholar]
  • Brasseur O., 2001 : Development and application of a physical approach to estimating wind gusts. Monthly Weather Review, 129, 5–25. [CrossRef] [Google Scholar]
  • Charney J. G., 1975 : Dynamics of desert and drought in the Sahel. Quaterly J. Roy. Meteor. Soc., 101, 193–202. [CrossRef] [Google Scholar]
  • De Ridder K. et Schayes G., 1997 : The IAGL land surface model. J. Appl. Meteor., 36, 167–182. [CrossRef] [Google Scholar]
  • De Ridder K. etSchayes G., 1998 : Land surface-induced regional climate change in Southern Israel. J. Appl. Meteor., 37, 1470–1485. [CrossRef] [Google Scholar]
  • Dhonneur G., 1971 : General circulation and types of weather over Western and Central Africa. GARPGATE Annex-IV, GARPGATE 23 Design, 22 pages. [Google Scholar]
  • Fontaine B. et Janicot S., 1996 : Sea Surface Temperature fields associated with West African rainfall anomaly types. J. Climate, 11, 2935–2940. [CrossRef] [Google Scholar]
  • Fouquart Y. et Bonnel B., 1980 : Computation of the solar heating of the Earth’s atmosphere: A new parametrization. Beitr. Phys. Atmos., 53, 35–62. [Google Scholar]
  • Gallee H. et Schayes G., 1994 : Development of a three-dimensional meso-gamma primitive equations model. Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Monthly Weather Review, 122, 671–685. [CrossRef] [Google Scholar]
  • Gallee H., 1995 : Simulation of the mesocyclonic activity in the Ross Sea, Antarctica. Monthly Weather Review, 123, 2051–2069. [CrossRef] [Google Scholar]
  • Gibson J. K., Kallberg P., Uppala S., Nomura A., Hernandez A. et serrano E., 1997 : ERA Description, ECMWF Re-Analysis Project Report Series, N°1, 72 pages. [Google Scholar]
  • Giorgi F. et Mearns L. O., 1999 : Introduction to special section: Regional climate modelling revisited. J. Geophys. Res., 104, 6335–6352. [CrossRef] [Google Scholar]
  • Gowing J., 2003 : Food security for sub-Saharan Africa: does water scarcity limit the options? Land Use and Water Resources Research, 3, 2.1–2.7. [Google Scholar]
  • Hagemann S., Arpe K. et Bengtsson L., 2005 : Validation of the hydrological cycle of ERA-40. ERA-40 Project Report Series N°24, ECMWF, Shinfield Park (Reading, Angleterre), 42 pages. [Google Scholar]
  • Kessler E., 1969 : On the distribution and continuity of water substance in atmospheric circulations. American Meteorological Society Meteorol. Monogr., 10(32), 84 pages. [Google Scholar]
  • Lamb J. P., 1978 : Cases studies of tropical Atlantic surface circulation patterns during recent Sub-Saharan weather anomalies: 1967 and 1968. Monthly Weather Review, 106, 482–491. [CrossRef] [Google Scholar]
  • Lebel T., Delclaux F. et Polcher J., 2000 : From GCM scale to hydrological scales: Rainfall variability in West Africa. Stochastic Environmental Research and Risk Assessment, 14, 275–295. [CrossRef] [Google Scholar]
  • Lebel T., Diedhiou A. et Laurent H., 2003 : Seasonal cycle and interannual variability of the Sahelian rainfall at hydrological scales. J. Geophys. Res., 108, 8389–8392. [CrossRef] [Google Scholar]
  • Levkov L., Rockel B., Kapitza H. et Raschke E., 1992 : 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Contrib. Atmos. Phys., 65, 35–58. [Google Scholar]
  • Lim H. S. et Ho C. H., 2000 : Comparison of tropical rainfall between the observed GPCP data and the assimilation products of ECMWF, NCEP/NCAR, and NASA-GEOS-1. J. Meteor., 78, 661–672. [Google Scholar]
  • Marbaix P., Gallee H., Brasseur O. et Ypersele J. P., 2003 : Lateral boundary conditions in regional climate models: A details study of the relaxation procedure. Monthly Weather Review, 131, 461–479. [CrossRef] [Google Scholar]
  • Mathon V., Laurent H. et Lebel T., 2002 : Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41 (11), 1081–1092. [CrossRef] [Google Scholar]
  • Morcrette J., 1984 : Sur la paramétrisation du rayonnement dans les modèles de circulation générale atmosphérique. Thèse de doctorat, Université des Sciences et Technologies de Lille, 373 pages. [Google Scholar]
  • Moron V., Philippon N. et Fontaine B., 2004 : Simulation of West-African circulation monsoon in four atmospheric GCMs forced by prescribed SST. Journal of Geophysical Research, 108, D24105. [CrossRef] [Google Scholar]
  • Moustaoui M., Royer J. F. et Chauvin F., 2002 : African easterly wave activity in a variable resolution GCM. Climate Dynamics, 19(3), 289–301. [CrossRef] [Google Scholar]
  • New M. et Hulme M., 2000 : Representing twentieth-century space time climate variability. part II: Development of 1901–1996 monthly grids of terrestrial surface climate. J. Climate, 13, 2217–2238. [CrossRef] [Google Scholar]
  • Nicholson S. E., 1981 : Rainfall and atmospheric circulation during drought periods and wetter years in West Africa. Monthly Weather Review, 109, 2191–2208. [CrossRef] [Google Scholar]
  • Nicholson S. E., 1983 : Comments on the South Indian convergence zone and interannual rainfall variability over South Africa and the question of ENSO’s influence on Southern Africa. J. Climate, 6, 1463–1466. [CrossRef] [Google Scholar]
  • Palmer T. N., 1986 : The influence of the Atlantic, Pacific and Indian Oceans on Sahel rainfall. Nature, 322, 251–253. [CrossRef] [Google Scholar]
  • Paeth H. et Hense A., 2004 : SST versus Climate Change Signals in West African Rainfall: 20th-Century Variations and Future Projections. Earth and Environmental Science, 65(1–2), 179–208. [Google Scholar]
  • Paeth H. et Friederichs P., 2004 : Seasonality and time scales in the relationship between global SST and African rainfall. Climate Dynamics, 23, 815–837. [CrossRef] [Google Scholar]
  • Philippon N. et Fontaine B., 2002 : The relationship between the Sahelian and previous 2nd Guinean rainy seasons: a monsoon regulation by soil wetness? Annales Geophysicae, 20(4), 575–582. [CrossRef] [Google Scholar]
  • Poccard I. et Janicot S., 2004 : Comparison of rainfall structures between NCEP/NCAR reanalyses and observed data over tropical Africa. Climate Dynamics, 16, 897–915. [CrossRef] [Google Scholar]
  • Ramel R., 2005 : Impacts des processus de surface sur le climat en Afrique de l’Ouest. Thèse de doctorat, Université Joseph Fourier (Grenoble 1), 149 pages. [Google Scholar]
  • Rowell D. P., Folland C. K., Maskell K. et Ward M. N., 1995 : Variability of summer rainfall over tropical North Africa (1906–92): observation and modelling. Quaterly J. Roy. Meteor. Soc., 121, 669–700. [Google Scholar]
  • Saha K. R. et Saha S., 2001 : African monsoons. Part 1: Climatological structure and circulation. Mausam, 52, 479–510. [Google Scholar]
  • Schnitzler K. G., Knorr W., Latiff M., Bader J. et Zeng N., 2001 : Vegetation feedback on Sahelian rainfall variability in a coupled climate land-vegetation model. Max Planck Inst. F. Meteoro, Report N°329, 13 pages. [Google Scholar]
  • Semazzi F. H. M., Lin Y. L. et Giorgi F., 1993 : A nested model study of the Sahelian climate response to sea-surface temperature anomalies. Geoph. Res. Lett., 20, 2897–2990. [CrossRef] [Google Scholar]
  • Simmons A. J. et Gibson J. K., 2000 : The ERA-40 Project Plan. ERA-40 Project Report Series N°1, ECMWF, Shinfield Park (Reading, Angleterre), 62 pages. [Google Scholar]
  • Simmons A. J., Jones P. D., Da Costa Bechtold V., Beljaars A. C. M., Kallberg P. W., Saarinen S., Uppala S. M., Viterbo P. et Wedi N., 2004 : Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res., 109, D24115. doi:10.1029/2004JD005306. [CrossRef] [Google Scholar]
  • Sud Y. C. et Molod A., 1988 : A GCM simulation study of the influence of Saharan evapotranspiration and surface-albedo anomalies on July circulation and rainfall. Monthly Weather Review, 116, 2388–2400. [CrossRef] [Google Scholar]
  • Sultan B. et Janicot S., 2000 : Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geoph. Res. Lett., 27, 3353–3356. [CrossRef] [Google Scholar]
  • Tippett M. K. et Giannini A., 2006 : Potentially predictable components of African summer rainfall in an SST-forced GCM simulation. J. Climate, 13, 3133–3144. [CrossRef] [Google Scholar]
  • Vizy R. K. et Cook K. H., 2001 : Mechanisms by which Gulf Guinea and Eartern North Atlantic sea surface temperature anomalies can influence African rainfall. J. Climate, 14, 795–821. [CrossRef] [Google Scholar]
  • Vizy R. K. et Cook K. H., 2002 : Development and application of a meso-scale climate model for the tropics: Influence of sea surface temperature anomalies on the West African monsoons. J. Geophys. Res., 107 (D3), ACL 2.1–2.22. [CrossRef] [Google Scholar]
  • Wang G. et Eltahir E. A. B., 2000 : Role of vegetation dynamics in enhancing the low-frequency variability of the Sahel rainfall. Water Resources Research, 36, 1013–1021. [CrossRef] [Google Scholar]
  • Xue Y. et Shukla J. , 1993 : The influence of land surface properties on Sahel climate. Part I: desertification. Journal of Climate, 6, 2232–2245. [CrossRef] [Google Scholar]
  • Zheng X. et Eltahir E. A. B., 1998 : The role of vegetation in the dynamics of West African monsoons. Journal of Climate, 11, 2078–2096. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.