Open Access
Numéro
Climatologie
Volume 19, 2022
Numéro d'article 1
Nombre de pages 6
DOI https://doi.org/10.1051/climat/202219001
Publié en ligne 31 janvier 2023
  • Bechtold P., Bazile E., Guichard F., Mascart P., Richard E., 2001. A mass-flux convection scheme for regional and global models. Quarterly Journal of the Royal Meteorological Society, 127(573), 869–886. DOI: 10.1002/qj.49712757309. [Google Scholar]
  • Bechtold P., 2009. Atmospheric moist convection. Meteorological Training Course Lecture Series. [Google Scholar]
  • Chen M., Shi W., Xie P., Silva V. B. S., Kousky V. E., Wayne Higgins. R., Janowiak J. E., 2008. Assessing objective techniques for gauge-based analyses of global daily precipitation. Journal of Geophysical Research, 113(D4), D04110. DOI: 10.1029/2007JD009132. [Google Scholar]
  • De Ridder K., Gallée H., 1998. Land Surface-Induced Regional Climate Change in Southern Israel. Journal of Applied Meteorology, 37(11), 1470–1485, DOI: 10.1175/1520-0450(1998)037<1470:LSIRCC>2.0.CO;2. [Google Scholar]
  • Harris I., Jones P. D., Osborn T. J., Lister D. H., 2014. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology, 34(3), 623–642. DOI: 10.1002/joc.3711. [CrossRef] [Google Scholar]
  • Haylock M. R., Hofstra N., Klein Tank A. M. G., Klok E. J., Jones P. D., New M., 2008. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 113(D20), D20119, DOI: 10.1029/2008JD010201. [Google Scholar]
  • Hersbach H., de Rosnay P., Bell B., et al., 2018. ERA Report: Operational global reanalysis: progress, future directions and synergies with NWP. ERA Report Series, 27, DOI: http://dx.doi.org/10.21957/tkic6g3wm. [Google Scholar]
  • Hong Y., Kummerow C. D., Olson W. S., 1999. Separation of convective and stratiform precipitation using microwave brightness temperature. Journal of Applied Meteorology, 38(8), 1195–1213, DOI: 10.1175/1520-0450(1999)038<1195:SOCASP>2.0.CO;2. [Google Scholar]
  • Houze R. A., 2014. Cloud dynamics. Elsevier Science, 496 pages. [Google Scholar]
  • Ishak A. M., Bray M., Remesan R., Han D., 2012. Seasonal evaluation of rainfall estimation by four cumulus parameterization schemes and their sensitivity analysis. Hydrological Processes, 26(7), 1062–1078, DOI: 10.1002/hyp.8194. [CrossRef] [Google Scholar]
  • Janjić Z. I., 1994. The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122(5), 927–945, DOI: 10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2. [Google Scholar]
  • Kain J. S., 2004. The Kain-Fritsch convective parameterization: an update. Journal of Applied Meteorology, 43(1), 170–181, DOI: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2. [Google Scholar]
  • Kendon E. J., Ban N., Roberts N. M., Fowler H. J., Roberts M. J., Chan S. C., Evans J. P., Fosser G., Wilkinson J. M., 2017. Do convection-permitting Regional Climate Models improve projections of future precipitation change? Bulletin of the American Meteorological Society, 98(1), 79–93, DOI: 10.1175/BAMS-D-15-0004.1. [CrossRef] [Google Scholar]
  • Trenberth K., 2011. Changes in precipitation with climate change. Climate Research, 47(1), 123–138, DOI: 10.3354/cr00953. [CrossRef] [Google Scholar]
  • Zhang C., Wang Y., Hamilton K., 2011. Improved representation of boundary layer clouds over the Southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Monthly Weather Review, 139(11), 3489–3513, DOI: 10.1175/MWR-D-10-05091.1. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.