Open Access
Numéro
Climatologie
Volume 15, 2018
Page(s) 46 - 61
DOI https://doi.org/10.4267/climatologie.1335
Publié en ligne 3 octobre 2019
  • Anquetin S., Guilbaud C. and Chollet J.-P., 1998. The formation and destruction of inversion layers within a deep valley. J. Appl. Meteor 37: 1547–1560. [CrossRef] [Google Scholar]
  • Barry R.G., 2008. Mountain Weather and Climate. 3rd ed. Cambridge University Press 506p. [Google Scholar]
  • Burns P. and Chemel C., 2015. Interactions between downslope flows and a developing cold-air pool. Boundary-Layer Meteorology, 154, 57–80. [CrossRef] [Google Scholar]
  • Chemel C., Arduini G., Staquet C., Largeron Y., Legain D., Tzanos D., et al., 2016. Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley. Atmos. Env., 128, 208–215. [CrossRef] [Google Scholar]
  • Conangla L., Cuxart J., Jiménez M.A., Martínez-Villagrasa D., Ramon J., Tabarelli M.D. and Zardi D., 2018. Cold-air pool evolution in a wide Pyrenean valley. International Journal of Climatology, 38(6), 2852–2865. doi.org/10.1002/joc.5467. [CrossRef] [Google Scholar]
  • Czarnecka M. and Nidzgorska-Lencewicz J., 2017. The impact of thermal inversion on the variability of PM10 concentration in winter seasons in Tricity. Environment Protection Engineering 44(2), 157–172. [Google Scholar]
  • Daly C., Conklin D.R. and Unsworth M.H., 2009. Local atmospheric decoupling in complex topography alters climate change impacts. International Journal of Climatology, 30(22), 1857–1864. [CrossRef] [Google Scholar]
  • Dorninger M., Whiteman C.D., Bica B., Eisenbach S., Pospichal B. and Steinacker R., 2011. Meteorological events affecting cold-air pools in a small basin. Journal Appl Meteorol Climatol, 50, 2223–2234. [CrossRef] [Google Scholar]
  • Dupont J.C., Haeffelin M., Stolaki S., Elias T., 2016. Analysis of dynamical and thermal processes driving fog and quasi-fog life cycles using the 2010–2013 ParisFog dataset. Pure Appl. Geophys., 173, 1337–1358; doi 10.1007/s00024-015-1159-x [CrossRef] [Google Scholar]
  • El Melki T., 2007. Inversions thermiques et concentrations de polluants atmosphériques dans la basse troposphère de Tunis, Climatologie. http://lodel.irevues.inist.fr/climatologie/index.php?id=773. [Google Scholar]
  • Fallot J.-M.., 2012. Influence de la topographie et des accumulations d’air froid sur les températures moyennes mensuelles et annuelles en Suisse. In Bigot S. and Rome S. (eds.).25ème colloque de l’Association Internationale de Climatologie (AIC) , 273–278. [Google Scholar]
  • Fernando H.J.S., Verhoef B., Di Sabatino S., Leo L.S. and Park S., 2013. The Phoenix Evening Transition Flow Experiment (TRANSFLEX). Boundary-Layer Meteorology, 147, 443–468. doi:https://doi.org/10.1007/s10546-012-9795-5. [CrossRef] [Google Scholar]
  • Helmis C.G. and Papadopoulos K.H., 1996. Some aspects of the variation with time of katabatic flows over a simple slope. Quarterly Journal of the Royal Meteorological Society, 122, 595–610. doi: https://doi.org/10.1002/qj.49712253103. [CrossRef] [Google Scholar]
  • Hu X.M., Klein P.M., Xue M., Shapiro A. and Nallapareddy A., 2013. Enhanced vertical mixing associated with a nocturnal cold front passage and its impact on near-surface temperature and ozone concentration. Journal of Geophysical Research: Atmospheres, 118(7), 2714–28. [CrossRef] [Google Scholar]
  • Jahanbakhshasl S. and Roshani R., 2013. The study of condition and the intensity of lower level temperature inversion in Tabriz of 2004–2008. Geographical Research, 28(4), 45–54. doi: https://doi.org/10.5194/isprsarchives-XL-1-W5-357-2015. [Google Scholar]
  • Joly D., Brossard T., Cardot H., Cavailhès J., Hilal M. and Wavresky P., 2010. Les types de climats en France, une construction spatiale (Types of climate in continental France, a spatial construction). Cybergeo: European Journal of Geography, 501. http://cybergeo.revues.org/index23155.html.. [Google Scholar]
  • Joly D., Bois B. and Zaksek K., 2012. Rank-ordering of topographic variables correlated with temperature. Atmospheric and Climate Science, 2(2), 139–147. doi: https://doi.org/10.4236/acs.2012.22015. [CrossRef] [Google Scholar]
  • Joly D., 2014. Etude comparative de la température en forêt et en espace ouvert dans le Parc Naturel Régional du Haut-Jura. Climatologie, 11. http://lodel.irevues.inist.fr/climatologie/index.php?id=562. [Google Scholar]
  • Joly D., Gillet F., 2017. Interpolation of temperatures under forest cover on a regional scale in the French Jura Mountains. International Journal of Climatology, 37(S1), 659–670. DOI:https://doi.org/10.1002/joc.5029. [CrossRef] [Google Scholar]
  • Joly D. and Richard Y., 2019. Frequency, intensity and duration of thermic inversions in the Jura, France. Theor Appl Climatol. doi.org/10.1007/s00704-019-02855-3. [Google Scholar]
  • Kollas C., Randin C.F., Vitasse Y. and Körner C.. 2013. How accurately can minimum temperatures at the cold limits of tree species be extrapolated from weather station data? Agricultural and Forest Meteorology, 184, 257–266. [CrossRef] [Google Scholar]
  • Largeron Y. and Staquet C., 2016. Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys. Atmospheric Environment, 135, 92–108. doi.org/10.1016/j.atmosenv.2016.03.045. [CrossRef] [Google Scholar]
  • Lundquist J.D., Pepin N. and Rochford C., 2008. Automated algorithm for mapping regions of cold-air pooling in complexterrain. Journal Geophysical Research, 113, D22107. [CrossRef] [Google Scholar]
  • Mahrt L., Richardson S., Seaman N. and Stauffer D., 2010. Non-stationary drainage flows and motions in the cold pool. Tellus, 62, 698–705. doi.org/10.1111/j.1600-0870.2010.00473.x. [CrossRef] [Google Scholar]
  • Mernild S.H., Liston G.E., 2010. The influence of air temperature inversions on snowmelt and glacier mass balance simulations, Ammassalik Island, Southeast Greenland. Journal Appl Meteorol Climatol,49(1), 47–67. doi.org/10.1175/2009JAMC2065.1. [CrossRef] [Google Scholar]
  • Mirocha J.D., Branko K., 2010. Large-eddy simulation study of the influence of subsidence on the stably stratified atmospheric boundary layer. Boundary-Layer Meteorol, 134(1), 1–21. doi 10.1007/s10546-594009-9449-4. [CrossRef] [Google Scholar]
  • Papadopoulos K.H. and Helmis C.G., 1999. Evening and morning transition of katabatic flows. Boundary-Layer Meteorology, 92, 195–227. doi.org/10.1023/A:1002070526425. [CrossRef] [Google Scholar]
  • Pomeroy J.W. and Brun E., 2001. Physical properties of snow. Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems. H.G. Jones, et al., Eds., Cambridge University Press, 45–126. [Google Scholar]
  • Sadoti G., McAfee S.A., Roland C.A., Fleur N.E., Sousanes P.J., 2018. Modelling high-latitude summer temperature patterns using physiographic variables. International Journal of Climatology, 38(10), 4033–4042. doi: 10.1002/joc.5538. [CrossRef] [Google Scholar]
  • Stewart S.B. and Nitschke C.R., 2016. Improving temperature interpolation using MODIS LST and local topography: A comparison of methods in south east Australia. International Journal of Climatology, 37(7), 3098–3110. [CrossRef] [Google Scholar]
  • Van Hooijdonk I.G.S., Clercx H.J.H., Abraham C., Holdsworth A.M., Monahan A.H., Vignon E., Moene A.F., Baas P. and Van De Wiel B.J.H., 2017. Near-surface temperature inversion growth rate during the onset of the stable boundary layer. Journal of the Atmospheric Sciences, 74(10), 3433–49. [CrossRef] [Google Scholar]
  • Vitasse Y., Klein G., Kirchner J.W. and Rebetez M., 2017. Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley. Switzerland. Theoretical and Applied Climatology, 130(3–4), 1073–1083. [CrossRef] [Google Scholar]
  • Wagner J.S., Gohm A. and Rotac M.W., 2015. The impact of valley geometry on daytime thermally driven flows and vertical transport processes. Quarterly Journal of the Royal Meteorological Society, 141(690), 1780–94. [CrossRef] [Google Scholar]
  • Williams R. and Thorp T., 2015. Characteristics of springtime nocturnal temperature inversions in a high latitude environment. Weather, 70, suppl.1, S37–43. doi.org/10.1002/wea.2554. [CrossRef] [Google Scholar]
  • Young M.V., 2016. Rapid temperature and wind fluctuations at a mountain site in northern England on 9/10 February 2015. Weather, 71(2), 32–35. [CrossRef] [Google Scholar]
  • Yu L., Zhong S., Bian X., 2017. Multi-day valley cold-air pools in the western United States as derived from NARR. International Journal of Climatology, 37(5), 2466–2476. [CrossRef] [Google Scholar]
  • Zardi D. and Whiteman C.D., 2013. Diurnal Mountain Wind Systems. In: Chow F., De Wekker S., Snyder B. (eds) Mountain Weather Research and Forecasting. Springer Atmospheric Sciences. Springer, Dordrecht. 35–119. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.