Open Access
Volume 21, 2023
Article Number 3
Number of page(s) 10
Published online 24 January 2024
  • Agosta C., Amory C., Kittel C., Orsi A., Favier V., Gallée H., van den Broeke M. R., Lenaerts J., van Wessem J. M., van de Berg W. J., et al., 2019. Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. The Cryosphere, 13, 281–296. [CrossRef] [Google Scholar]
  • Bennartz R., Shupe M., Turner D., Walden V., Steffen K., Cox C., Kulie M., Miller N., Pettersen C.., 2013. July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 83–86. [CrossRef] [Google Scholar]
  • Edwards T. L., Nowicki S., Marzeion B., Hock R., Goelzer H., Seroussi H., Jourdain N. C., Slater D. A., Turner F. E., Smith C. J., McKenna C. M., Simon E., Abe-Ouchi A., Greogry J. M., et al., 2021. Projected land ice contributions to twenty-first-century sea level rise. Nature, 593(7857), 74–82. [CrossRef] [Google Scholar]
  • Fettweis X., Box J., Agosta C., Amory C., Kittel C., Lang C., van As D., Machguth H., Gallée H.., 2017. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11, 1015–1033. [CrossRef] [Google Scholar]
  • Gallée H.., 1995. Simulation of the mesocyclonic activity in the Ross Sea, Antarctica. Monthly Weather Review, 123, 2051–2069. [CrossRef] [Google Scholar]
  • The IMBIE team (Shepherd A., Ivins E., Rignot E., Smith B., van den Broeke M., Velicogna I., Whitehouse P., Briggs K., Joughin I., Krinner G., Nowicki S., Payne T., Scambos T., et al.), 2018. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558, 219–222. [CrossRef] [Google Scholar]
  • Jourdain N. C., Asay-Davis X., Hattermann T., Straneo F., Seroussi H., Little C. M., Nowicki S.., 2020. A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections. The Cryosphere, 14, 3111–3134. [CrossRef] [Google Scholar]
  • Kim B.-H., Seo K.-W., Eom J., Chen J., Wilson C. R.., 2020. Antarctic ice mass variations from 1979 to 2017 driven by anomalous precipitation accumulation. Scientific reports, 10, 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Kittel C.., 2021. Present and future sensitivity of the Antarctic surface mass balance to oceanic and atmospheric forcings: insights with the regional climate model MAR. PhD thesis, University of Liège, [Google Scholar]
  • Kittel C., Amory C., Agosta C., Jourdain N. C., Hofer S., Delhasse A., Doutreloup S., Huot P.-V., Lang C., Fichefet T., Fettweis X.., 2021. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. The Cryosphere, 15, 1215–1236. [CrossRef] [Google Scholar]
  • Lenaerts J. T., Medley B., van den Broeke M. R., Wouters B.., 2019. Observing and modeling ice sheet surface mass balance. Reviews of Geophysics, 57, 376–420. [CrossRef] [Google Scholar]
  • Mottram R., Hansen N., Kittel C., van Wessem J. M., Agosta C., Amory C., Boberg F., van de Berg W. J., Fettweis X., Gossart A., van Lipzig N. P. M., van Meijgaard E., Orr A., Phillips T., Webster S., Simonsen S. B., Souverijns N.., 2021. What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates The Cryosphere, 15, 3751–3784. [CrossRef] [Google Scholar]
  • Medley B. and Thomas E.., 2019. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nature Climate Change, 9, 34–39. [CrossRef] [Google Scholar]
  • Massager C., Gallée H., Brasseur O.., 2004. Precipitation sensitivity to regional SST in a regional climate simulation during the West African monsoon for two dry years. Climate Dynamics, 22, 249–266. [CrossRef] [Google Scholar]
  • Monaghan A. J., Bromwich D. H., Fogt R. L., Wang S.-H., Mayewski P. A., Dixon D. A., Ekaykin A., Frezzotti M., Goodwin I., Isaksson E., Kaspari S. D., Van Ommen T. D., Van der Veen C., Wen J.., 2006. Insignificant change in Antarctic snowfall since the International Geophysical Year. Science, 313, 827–831. [CrossRef] [Google Scholar]
  • Otosaka I. N., Shepherd A., Ivins E. R., Schlegel N.-J., Amory C., van den Broeke M. R., Horwath M., Joughin I., King M. D., Krinner G., Nowicki S., et al., 2023. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data, 15, 1597–1616. [CrossRef] [Google Scholar]
  • Palerme C., Genthon C., Claud C., Kay J. E., Wood N. B., L’Ecuyer T.., 2017. Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate dynamics, 48, 225–239. [CrossRef] [Google Scholar]
  • Paolo F. S., Fricker H. A., Padman L.., 2015. Volume loss from Antarctic ice shelves is accelerating. Science, 348, 327–331. [CrossRef] [Google Scholar]
  • Rignot E., Mouginot J., Scheuchl B., van den Broeke M., van Wessem M. J., Morlighem M.., 2019. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences, 116, 1095–1103. [CrossRef] [Google Scholar]
  • Scambos T. A., Berthier E., Haran T., Shuman C. A., Cook A. J., Ligtenberg S. R. M., Bohlander J.., 2014. Detailed ice loss pattern in the northern Antarctic Peninsula: widespread decline driven by ice front retreats. The Cryosphere, 8, 2135–2145. [CrossRef] [Google Scholar]
  • Seroussi H., Nowicki S., Payne A. J., Goelzer H., Lipscomb W. H., Abe-Ouchi A., Agosta C., Albrecht T., Asay-Davis X., Barthel A., et al., 2020. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. The Cryosphere, 14, 3033–3070. [CrossRef] [Google Scholar]
  • Slater T., Lawrence I. R., Otosaka I. N., Shepherd A., Gourmelen N., Jakob L., Tepes P., Gilbert L., Nienow P.., 2021. Earth’s ice imbalance. The Cryosphere, 15, 233–246. [CrossRef] [Google Scholar]
  • Stephens G. L.., 1984. The parameterization of radiation for numerical weather prediction and climate models. Monthly Weather Review, 112, 826–867. [CrossRef] [Google Scholar]
  • Trusel L. D., Frey K. E., Das S. B., Karnauskas K. B., Munneke P. K., Van Meijgaard E., Van Den Broeke M. R.., 2015. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nature Geoscience, 8, 927–932. [CrossRef] [Google Scholar]
  • van den Broeke M.. 2005. Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophysical Research Letters, 32. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.