Open Access
Issue
Climatologie
Volume 21, 2023
Article Number 1
Number of page(s) 20
DOI https://doi.org/10.1051/climat/202321001
Published online 24 January 2024
  • Aloysius, N.R., Sheffield, J., Saiers, J.E., Li, H., Wood, E.F., 2016. Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. J. Geophys. Res.: Atmospheres, 121, 130–152. [CrossRef] [Google Scholar]
  • Andrei, S., Antonescu, B., Boldeanu, M., Marmureanu,, L., Marin, C.A., Vasilescu, J., Ene, D., 2019. An exceptional case of freezing rain in Bucharest (Romania). Atmosphere, 10, 673. [CrossRef] [Google Scholar]
  • Bandhauer, M., Isotta, F., Lakatos, M., Lussana, C., Båserud, L., Izsák, B., Szentes, O., Tveito, O.E., Frei, C., 2022. Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolution datasets in European regions. Int. J. Climatol., 42, 727–747. [CrossRef] [Google Scholar]
  • Barriopedro, D., Sousa, P.M., Trigo, R.M., Gacia-Herrera, R., Ramos, A.M., 2019. The exceptional Iberian heatwave of summer 2018. Bull. Am. Meteorol. Soc., 101, s15–s19. [Google Scholar]
  • Bastin, S., Drobinski, P., Chiriaco, M., Bock, O., Roehrig, R., Gallardo, C., Conte, D., Dominguez Alonso, M., Li, L., Lionello, P., Parracho, A.C., 2019. Impact of humidity biases on light precipitation occurrence: observations versus simulations. Atmos. Chem. Phys., 19, 1471–1490. [CrossRef] [Google Scholar]
  • Bendel, W.B. and Paton, D., 1981. A review of the effect of ice stomrs on thepower industry. JAMC, 20, 1445–1449. [Google Scholar]
  • Bernstein, B.C., 2000. Regional and local influences on freezing drizzle, freezing rain, and ice pellet events. Weather and Forecasting, 15, 485–508. [CrossRef] [Google Scholar]
  • Bonelli, P., Lacavall, M., Marcacci, A.P., Mariani, G., Stella, G., 2011. Wet snow hazard for power lines: a forecast and alert system applied in Italy. Nat. Hazards Earth Syst. Sci., 11, 2419–2431. [CrossRef] [Google Scholar]
  • Bourguin, P., 2000. A method to determine precipitation types. WAF, 15, 583–592. [Google Scholar]
  • Broström, E., 2007. Ice storm modelling in transmission system reliability calculations. Thesis of the School of Eletrical Engineering Electric Power Systems. Royal Institute of Technology, Stockholm, Sweden, 117pp. [Google Scholar]
  • Bulygina, O.N., Arzhanova, N.M., Groismann, P.Y., 2015. Icing conditions over Northern Eurasia in changing climate. Environ. Res. Let., 10, 025003. [CrossRef] [Google Scholar]
  • Call, D.A., 2010. Changes in ice storm impacts over time: 1886–2000. Weather, Climate, and Society, 2, 23–35. [CrossRef] [Google Scholar]
  • Caloiero, T., Coscarelli, R., Ferrari, E., Sirangelo, B., 2015. Analysis of dry spells in Southern Italy (Calabria). Water, 14, 3009–3023. [CrossRef] [Google Scholar]
  • Carrière, J.M., Lainard, C., Le Bot, C., Robart, F., 2000. A climatological study of surface freezing precipitation in Europe. Meteor. Appl., 7, 229–238. [CrossRef] [Google Scholar]
  • Carvalho, D., Cardoso Pereira, S., Rocha, A., 2021. Future surface temperatures over Europe according to CMIP6 climate projections: an analysis with original and bias-corrected data. Clim. Ch., 167, 10. [CrossRef] [Google Scholar]
  • Changnon, S.A., 2003. Characteristics of ice storms in the United States. JAMC, 42, 630–639. [Google Scholar]
  • Changnon, S.A. and Bigley, R., 2005. Fluctuations in us freezing rain days. Clim. Change, 69, 229–244. [CrossRef] [Google Scholar]
  • Chen, M., Shi, W., Xie, P., Silva, V.B.S., Kousky, V.E., Higgins, R.W., Janowiak, J.E., 2008. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos., 113, D04110. [Google Scholar]
  • Cheng, C.S., Auld, H., Li, G., Klaassen, J., Li, Q., 2007. Possible impacts of climate change on freezing rain in south-central Canada using downscaled future climate scenarios. Nat. Hazards Earth Syst. Sci., 7, 71–87. [Google Scholar]
  • Cheng, C.S., Li, G., Auld, H., 2011. Possible impacts of climate change on freezing rain using downscaled future climate scenarios: Updated for Eastern Canada. Atmosphere-Ocean, 49, 8–21. [CrossRef] [Google Scholar]
  • Christensen, O.B., Drews, M., Christensen, J.H., Dethloff, K., Ketelsen, K., Hebestadt, I., Rinke, A., 2007. Technical Report 06-17: The HIRHAM Regional Climate Model Version 5. Danish Meteorological Institute, Copenhagen. [Google Scholar]
  • Cornes, R.C., van der Schrier, G., van den Besselaar, E.J.M., Jones, P.D., 2018. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res.: Atmospheres, 123, 9391–9409. [CrossRef] [Google Scholar]
  • Cortinas, J., 2000. A climatology of freezing rain in the Great Lakes region of North America. Month. Weath. Rev., 128, 3574–3588. [CrossRef] [Google Scholar]
  • Cortinas, J., Bernstein, B.C., Robbins, C.C., Strapp, J.W., 2004. An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. WAF, 19, 377–390. [Google Scholar]
  • Degelia, S.K., Christian, J.I., Basara, J.B., Mitchell, T.J., Gardner, D.J., Jackson, S.E., Ragland, J.C., Mahan, H.R., 2016. An overview of ice storms and their impact in the United States. Int. J. Climatol., 36, 2811–2822. [CrossRef] [Google Scholar]
  • Dore, M.H.I., 2003. Forecasting the conditional probabilities of natural disasters in Canada as a guide for disaster preparedness. Nat. Haz., 28, 249–263. [CrossRef] [Google Scholar]
  • Dosio, A., 2016. Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models. J. Geophys. Res. Atmos., 121, 5488–5511. [CrossRef] [Google Scholar]
  • Drobinski, P., Da Silva, N., Panthou, G., Bastin, S., Muller, C., Ahrens, B., Borga, M., Conte, D., Fosser, G., Giorgi, F., Güttler, I., Kotroni, V., Li, L., Morin, E., Onol, B., Quintana-Segui, P., Romera, R., Torma, C.Z., 2018. Scaling precipitation extremes with temperature in the Mediterranean: Past climate assessment and projection in anthropogenic scenarios. Clim. Dyn., 51, 1237–1257. [CrossRef] [Google Scholar]
  • Flaounas, E., Drobinski, P., Borga, M., Calvet, J.C., Delrieu, G., Morin, E., Tartari, G., Toffolon, R., 2012. Assessment of gridded observations used for climate model validation in the Mediterranean region: the HyMeX and MED-CORDEX framework. Env. Res. Let., 7, 024017. [CrossRef] [Google Scholar]
  • Forbes, R., Tsonevsky, I., Hewsom, T., Leutbecher, M., 2014. Towards predicting high-impact freezing rain events. ECMWF letter, 141, 15–21. [Google Scholar]
  • Frick, C., Wernli, H., 2012. Case study of high-impact wet snowfall in Northwest Germany (25–27 November 2005): Observations, dynamics, and forecast performance. WAF, 27, 1217–1234. [Google Scholar]
  • Gil-Alana, L.A., Sauci, L.. 2019, Temperatures across Europe: evidence of time trends. Clim. change, 157, 355–364. [CrossRef] [Google Scholar]
  • Giorgi, F., Jones, C., Asrar, G.R., 2009. Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin, 58, 175–183. [Google Scholar]
  • Giorgi, F., 2010. Uncertainties in climate change projections, from the global to the regional scale. EPJ Web of Conferences, 9, 115–129. [CrossRef] [EDP Sciences] [Google Scholar]
  • Groisman, P.Y., Bulygina, O.N., Yin, X., Vose, R.S., Gulev, S.K., Hanssen-Bauer, I., Førland, E., 2016. Recent changes in the frequency of freezing precipitation in North America and Northern Eurasia. Environ. Res. Let., 11, 045007. [CrossRef] [Google Scholar]
  • Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D., New, M., 2008. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119. [Google Scholar]
  • Hawkins, E. and Sutton, R., 2009. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc., 90, 1095–1107. [CrossRef] [Google Scholar]
  • Hawkins, E. and Sutton, R., 2011. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn., 37, 407–418. [CrossRef] [Google Scholar]
  • Herrera, S., Gutiérrez, J.M., Ancell, R., Pons, M.R., Frías, M.D., Fernandez, J., 2012. Development and analysis of a 50-year highresolution daily gridded precipitation dataset over Spain (Spain02). Int. J. Climatol., 32, 74–85. [CrossRef] [Google Scholar]
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.N., 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc., 146, 1999–2049. [NASA ADS] [CrossRef] [Google Scholar]
  • Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., Pegion, P., 2012. On the increased frequency of Mediterranean drought. J. Clim., 25, 2146–2161. [CrossRef] [Google Scholar]
  • Hofstra, N., Haylock, M., New, M., Jones, P., 2009. Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J. Geophys. Res., 114, D21101. [Google Scholar]
  • Hofstra, N., New, M., McSweeney, C., 2010. The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Clim. Dyn., 35, 841–858. [CrossRef] [Google Scholar]
  • Horton, P., Jaboyedoff, M., Obled, C., 2018. Using genetic algorithms to optimize the analogue method for precipitation prediction in the Swiss Alps. J. Hydrom., 556, 1220–1231. [CrossRef] [Google Scholar]
  • Hu, G., Franzke, C.L.E., 2020. Evaluation of daily precipitation extremes in reanalysis and gridded observation-based data sets over Germany. Geophys. Res. Let., 47, e2020GL089624. [CrossRef] [Google Scholar]
  • Huffman, G.J., Adler, R.F., Morrissey, M.M., Bolvin, D.T., Curtis, S., Joyce, R., McGavock, B., Susskind, J., 2001. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrom., 2, 36–50. [CrossRef] [Google Scholar]
  • IPCC: Summary for Policymakers, 2021. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B. (eds.)]. Cambridge University Press. [Google Scholar]
  • Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O., Bouwer, L., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., Yiou, P., 2014. EUROCORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang., 14, 563–578. [CrossRef] [Google Scholar]
  • Kämäräinen, M., Hyvärinen, O., Jylhä, k., Vajda, A., Neiglick, S., Nuottokari, J., Gregow, H., 2017. A method to estimate freezing rain climatology from ERA-Interim reanalysis over Europe. Nat. Hazards Earth Syst. Sci., 17, 243–259. [CrossRef] [Google Scholar]
  • Kämäräinen, M., Hyvärinen, O., Vajda, A., Nikulin, G., van Meijgaard, E., Teichmann, C., Jacob, D., Gregow, H., Jylhä, K., 2018. Estimates of present-day and future climatologies of freezing rain in Europe based on CORDEX Regional Climate Models. J. Geophys. Res.: Atmospheres, 123, 13291–13304. [Google Scholar]
  • Kjellström, E., Boberg, F., Castro, M., Christensen, J.H., Nikulin, G., Sánchez, E., 2010. Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Clim. Res., 44, 135–150. [CrossRef] [Google Scholar]
  • Kjellström, E., Thejll, P., Rummukainen, M., Christensen, J.H., Boberg, F., Christensen, O.B., Fox Maule, C., 2013. Emerging regional climate change signals for Europe under varying large-scale circulation conditions. Clim. Res., 56, 103–119. [CrossRef] [Google Scholar]
  • Klok, E.J., Klein Tank, A.M.G., 2009. Updated and extended European dataset of daily climate observations. Int. J. Climatol., 29, 1182–1191. [CrossRef] [Google Scholar]
  • Kumar, S., Merwade, V., Kinter, J.M., III, Niyogi, D., 2013. Evaluation of temperature and precipitation trends and long-term persistence in CMIP5 twentieth-century climate simulations. J. Cli., 26, 4168–4185. [CrossRef] [Google Scholar]
  • Kyselý, J., Plavcová, E., 2010. A critical remark on the applicability of E-OBS European gridded temperature data set for validating control climate simulations. J. Geophys. Res., 115, D23118. [Google Scholar]
  • Lambert, S.J., Hansen, B.K., 2011. Simulated changes in the freezing rain climatology of North America under global warming using a coupled climate model. Atmosphere-Ocean, 49, 289–295. [CrossRef] [Google Scholar]
  • Lemos, G., Semedo, A., Dobrynin, M., Menendez, M., Miranda, P.M.A., 2020. Bias-corrected CMIP5-derived single-forcing future wind wave climate projections toward the end of the twenty-first century. J. of App. Met. and Clim., 59, 1393–1414. [CrossRef] [Google Scholar]
  • Llasat, M.C., Turco, M., Quintana-Segui, P., Llasat-Botija, M., 2014. The snow storm of 8 March 2010 in Catalonia (Spain): a paradigmatic wet-snow event with a high societal impact. Nat. Hazards Earth Syst. Sci., 14, 427–441. [CrossRef] [Google Scholar]
  • Makkonen, L., Wichura, B., 2010. Simulating wet snow loads on power line cables by a simple model. Cold Reg. Sci. Technol., 61, 73–81. [CrossRef] [Google Scholar]
  • Marcacci, P., Lacavella, M., Pirovano, G., 2019. Monitoring, measurements and mitigation for wet snow accretion on overhead conductors. Proceedings – Int. Workshop on Atmospheric Icing of Structures, 23-28 June 2019, Reykjavik, Finland, 6p. [Google Scholar]
  • Markosek, J., 2015. Severe freezing rain in Slovenia. Report from the Slovenian Environmental Agency, in Newsletter 20 of the European Forecaster. [Google Scholar]
  • Mehran, A., Aghakouchak, A., Philipps, T.J., 2014. Evaluation of CMIP5 continental precipitation simulations relative to satellite-base gauge-adjusted observations. J. Geophys. Res.: Atmospheres, 119, 1695–1707. [CrossRef] [Google Scholar]
  • Michelangeli, P.-A., Vrac, M., Loukos, H., 2009. Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geoph. Res. Let., 36, L11708. [CrossRef] [Google Scholar]
  • Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P., Wilbanks, T., 2010. The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. [CrossRef] [PubMed] [Google Scholar]
  • Noël, T., Loukos, H., Defrance, D., Vrac, M., Levavasseur, G., 2021. A high-resolution downscaled CMIP5 projections dataset of essential surface climate variables over the globe coherent with the ERA5 reanalysis for climate change impact assessments. Data in Brief, 35, 106900. [CrossRef] [Google Scholar]
  • Prein, A.F. and Gobeit, A., 2017. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol., 37, 305–327. [CrossRef] [Google Scholar]
  • Rauber, R.M., Ramamurthy, M.K., Tokay, A., 1994. Synoptic and mesoscale structures of a severe freezing rain event: the St. Valentine’s day ice storm. WAF, 9, 183–208. [Google Scholar]
  • Raymond, F., Ullmann, A., Camberlin, P., Drobinski, P., Chateau Smith, C., 2016. Extreme dry spell detection and climatology over the Mediterranean Basin during the wet season. Geophys. Res. Lett., 43, 7196–7204. [CrossRef] [Google Scholar]
  • Raymond, F., Ullmann, A., Camberlin, P., Oueslati, B., Drobinski, P., 2018a. Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin. Clim. Dyn., 50, 4437–4453. [Google Scholar]
  • Raymond, F., Drobinski, P., Ullmann, A., Camberlin, P., 2018b. Extreme dry spells over the Mediterranean Basin during the wet season: assessment of hymex/med-CORDEX regional climate simulations (1979–2009). Int. J. Climatol., 38, 3090–3105. [CrossRef] [Google Scholar]
  • Rivoire, P., Martius, o., Naveua, P., 2021. A comparison of moderate and extreme ERA-5 daily 2 precipitations with two observational data sets. Earth and Space Science, 8, e2020EA001633. [CrossRef] [Google Scholar]
  • Rockel, B., Will, A., Hense, A., 2008. The regional climate model COSMO-CLM (CCLM). Meteorol. Z., 17, 347–348. [CrossRef] [Google Scholar]
  • Rummukainen, M., Räisänen, J., Bringfelt, B., Ullerstig, A., Omstedt, A., Willen, U., Hansson, U., Jones, C., 2001. A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations. Clim. Dyn., 17, 339–359. [CrossRef] [Google Scholar]
  • Sillmann, J., Kharin, V.V., Zhang, X., Zwiers, F.W., Bronaugh, D., 2013. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res.: Atmospheres, 118, 1716–1733. [CrossRef] [Google Scholar]
  • Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., Huang, X., Wang, W., Powers, J., 2008. A description of the advanced research wrf version 3. NCAR Technical Note NCAR/TN- 475+STR, NCAR, Boulder. [Google Scholar]
  • Solangi, A.R., 2018. Icing effects on power lines and anti-icing and de-icing methods. Thesis of the Artic University of Norway, Department of Safety and Engineering, Tromsø, Norway, 89pp. [Google Scholar]
  • Stefanon, M., D’Andrea, F., Drobinski, P., 2012. Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett., 7, 014023. [CrossRef] [Google Scholar]
  • Stefanon, M., Drobinski, P., D’Andrea, F., Lebeaupin-Brossie, C., Bastin, S., 2014. Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim. Dyn., 42, 1309–1324. [CrossRef] [Google Scholar]
  • Stewart, R.E., Thériault, J.M., Henson, W., 2015. On the characteristics of and processes producing winter precipitation types near 0°C. Bull. Am. Met. Soc., 96, 623–642. [Google Scholar]
  • US NWS, 2020. WFO winter weather products specification. NWSI report, 10-513, 51pp. [Google Scholar]
  • Vaittinada Ayar, P., Vrac, M., Bastin, S., Carreau, J., Déqué, M., Gallardo, C., 2016. Intercomparison of statistical and dynamical downscaling models under the EUROS- and MED-CORDEX initiative framework: present climate evaluations. Clim. Dyn., 46, 1301–1329. [CrossRef] [Google Scholar]
  • Vaittinada Ayar, P., Vrac, M., Mailhot, A., 2021. Ensemble bias correction of climate simulations: preserving internal variability. Sci. Rep., 11, 3098. [CrossRef] [Google Scholar]
  • Van den Besselaar, E.,.J.,.M., Klein Tank, A.M.G., Buishand, T.A., 2012. Trends in European precipitation extremes over 1951–2010. Int. J. Climatol, 33, 2682–2689. [Google Scholar]
  • Van Meijgaard, E., van Ulft, L.H., van de Berg, W.J., Bosveld, F.C., van den Hurk, B., Lenderink, G., Siebesma, A.P., 2008. 302: The KNMI regional atmospheric climate model RACMO version 2.1 . Royal Netherlands Meteorological Institute, De Bilt. [Google Scholar]
  • Van Oldenborgh, G.J., Drijfhout, S., van Ulden, A., Haarsma, R., Sterl, A., Severijns, C., Hazeleger, W., Dijkastra, H., 2009. Western Europe is warming much faster than expected. Clim. Past., 5, 1–12. [Google Scholar]
  • Velikou, K., Lazoglou, G., Tolika, K., Anagnostopoulou, C., 2022. Reliability of the ERA5 in replicating mean and extreme temperatures across Europe. Water, 14, 543. [CrossRef] [Google Scholar]
  • von Trentini, F., Leduc, M., Ludwig, R., 2019. Assessing natural variability in RCM signals: comparison of a multi model EURO-CORDEX ensemble with a 50-member single model large ensemble. Clim. Dyn., 53, 1963–1979. [CrossRef] [Google Scholar]
  • Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L., Somot, S., 2012. Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment. Nat. Hazards Earth Syst. Sci., 11, 2769–2784. [CrossRef] [Google Scholar]
  • Vrac, M. and Friederichs, P., 2015. Multivariate-intervariable, spatial, and temporal-Bias correction. J. Clim., 28, 218–237. [CrossRef] [Google Scholar]
  • Vrac, M., Noël, T., Vautard, R., 2016. Bias correction of precipitation through Singularity Stochastic Removal: Because occurrences matter. J. Geophys. Res. Atmos., 121, 5237–5258. [CrossRef] [Google Scholar]
  • Xu, Z., Han, Y., Tam, C.y., Yang, Z.L., Fu, C., 2021. Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100). Sci. data, 8, 293. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.