Open Access
Issue |
Climatologie
Volume 19, 2022
|
|
---|---|---|
Article Number | 4 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/climat/202219004 | |
Published online | 31 January 2023 |
- Anquetin S., Guilbaud C., Chollet J.-P., 1998. The formation and destruction of inversion layers within a deep valley. J. Appl. Meteor., 37: 1547–1560. [Google Scholar]
- Antonioli S., 2016. Lapse rate inversions in the Po valley: A 30-year overview. Master ‘Environmental and Land Planning Engineering’, Polytechnico Milano, 97p. [Google Scholar]
- Arduini G., Chemel C., Staquet C., 2020. Local and non-local controls on a persistent cold-air pool in the Arve River Valley. Quarterly Journal of the Royal Meteorological Society, 146: 2497–2521. https://doi.org/10.1002/qj.3776 [CrossRef] [Google Scholar]
- Barry R. G., 2008. Mountain Weather and Climate. 3rd ed. Cambridge University Press, 506 p. [Google Scholar]
- Bailey A., Chase T. N., Cassano J. J., Noone D., 2011. Changing temperature inversion characteristics in the U.S. Southwest and relationships to large-scale atmospheric circulation. Journal of Applied Meteorology and Climatology, 50(6): 1307–1323. [Google Scholar]
- Bish M. D., Guinan P. E., Bradley K. W., 2019. Inversion climatology in high-production agricultural regions of Missouri and implications for pesticide applications. Journal of Applied Meteorology and Climatology, 589: 1973–1992. https://doi.org/10.1175/JAMC-D-18-0264.1 [CrossRef] [Google Scholar]
- Burns P., Chemel C., 2015. Interactions between downslope flows and a developing cold-air pool. Boundary-Layer Meteorology, 154: 57–80. [CrossRef] [Google Scholar]
- Chemel C., Arduini G., Staquet C., Largeron Y., Legain D., Tzanos D., et al., 2016. Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley. Atmos. Env., 128: 208–215. [CrossRef] [Google Scholar]
- Conangla L., Cuxart J., Jiménez M. A., Martínez-Villagrasa D., Ramon J., Tabarelli M. D., Zardi D., 2018. Cold-air pool evolution in a wide Pyrenean valley. Int. J. Clim., 386: 2852–2865. https://doi.org/10.1002/joc.5467 [CrossRef] [Google Scholar]
- Czarnecka M., Nidzgorska-Lencewicz J., 2017. The impact of thermal inversion on the variability of PM10 concentration in winter seasons in Tricity. Environment Protection Engineering, 442: 157–172 https://doi.org/10.5277/epe170213 [Google Scholar]
- Daly C., Conklin D. R., Unsworth M. H., 2010. Local atmospheric decoupling in complex topography alters climate change impacts. Int. J. Clim., 30(22): 1857–1864; https://doi.org/10.1002/joc.2007 [CrossRef] [Google Scholar]
- Dorninger M., Whiteman C. D., Bica B., Eisenbach S., Pospichal B., Steinacker R., 2011. Meteorological events affecting cold-air pools in a small basin. Journal Appl. Meteorol. Climatol., 50: 2223–2234. [CrossRef] [Google Scholar]
- Dodson J., Marks D., 1997. Daily air temperature interpolated at high spatial resolution over a large mountainous region. Clim. Res., 8: 1–20, https://doi.org/10.3354/cr008001. [CrossRef] [Google Scholar]
- El Melki T., 2007. Inversions thermiques et concentrations de polluants atmosphériques dans la basse troposphère de Tunis (Temperature inversions and atmospheric pollution concentrations in the low troposphere of Tunis). Climatologie, 4: 105–129. https://doi.org/10.4267/climatologie.773 [CrossRef] [Google Scholar]
- Erpicum M., 2004. Discrimination des effets radiatifs et des effets advectifs à partir des observations de températures du réseau météo-routier de Wallonie. Norois [on line], 191(2). https://doi.org/10.4000/norois.1184 [Google Scholar]
- Fallot J.-M., 2012. Influence de la topographie et des accumulations d’air froid sur les températures moyennes mensuelles et annuelles en Suisse. In Bigot S. et Rome S. (eds.), 25ème colloque de l’Association Internationale de Climatologie (AIC): 273–278 [Google Scholar]
- Fernando H. J. S., Verhoef B., Di Sabatino S., Leo L. S., Park S., 2013. The Phoenix Evening Transition Flow Experiment TRANSFLEX. Boundary-Layer Meteorology, 147: 443–468. https://doi.org/10.1007/s10546-012-9795-5 [CrossRef] [Google Scholar]
- Fritz B. K., Hoffman W. C., Lan Y., Thomson S. J., Huang Y., 2008. Low-level atmospheric temperature inversions and atmospheric stability: Characteristics and impacts on agricultural applications. Atmos. Environ., 10: 105–130. https://doi.org/10.1016/j.atmosenv.2015.01.052. [Google Scholar]
- Gardner A. S., Sharp M. J., Koerner R. M., Labine C., Boon S., Marshall S. J., Burgess D. O., Lewis D., 2009. Near-surface temperature lapse rates over Arctic glaciers and their implications for temperature downscaling. Journal of Climate, 2216: 4281–4298. doi:10.1175/2009JCLI2845.1 [CrossRef] [Google Scholar]
- Helmis C. G., Papadopoulos K. H., 1996. Some aspects of the variation with time of katabatic flows over a simple slope. Quarterly Journal of the Royal Meteorological Society, 122: 595–610. https://doi.org/10.1002/qj.49712253103 [CrossRef] [Google Scholar]
- Joly D., Berger A., Buoncristiani J.-F., Champagne O., Pergaud J., Richard Y., Soare P., Pohl B., 2018. Geomatic downscaling of temperatures in the Mont-Blanc massif. Int. J. Climatol., 384: 1846–1863. doi:10.1002/joc.5300 [CrossRef] [Google Scholar]
- Joly D., Brossard T., Cardot H., Cavailhès J., Hilal M., Wavresky P., 2010. Les types de climats en France, une construction spatiale (Types of climate in continental France, a spatial construction). Cybergeo: European Journal of Geography, 501. http://cybergeo.revues.org/index23155.html [Google Scholar]
- Joly D., Richard Y., 2018. Topographic descriptors and thermal inversions amid the plateaus and mountains of the Jura (France). Climatologie [Online], updated on: 02/10/2019. lodel.irevues.inist.fr/climatologie/index.php?id=1335. [Google Scholar]
- Joly D., Richard Y., 2019. Frequency, intensity, and duration of thermal inversions in the Jura Mountains of France. Theor. Appl. Climat., 1381: 639–655. https://doi.org/10.1007/s00704-019-02855-3 [CrossRef] [Google Scholar]
- Kirchner M., Faus-Kessler T., Jakobi G., Leuchner M., Ries L., Scheel H. E., Suppan P., 2013. Altitudinal temperature lapse rates in an Alpine valley: trends and the influence of season and weather patterns. Int. J. Clim., 333: 539–555. https://doi.org/10.1002/joc.3444 [CrossRef] [Google Scholar]
- Lareau N. P., Horel J. D., 2015a. Dynamically induced displacements of a persistent cold-air pool. Boundary-Layer Meteorology, 154: 291–316. https://doi.org/10.1007/s10546-014-9968-5 [CrossRef] [Google Scholar]
- Lareau N. P., Horel J. D., 2015b. Turbulent erosion of persistent cold-air pools: Numerical simulations. Journal of the Atmospheric Sciences, 724: 1409–1427. DOI: https://doi.org/10.1175/JAS-D-14-0173.1 [CrossRef] [Google Scholar]
- Largeron Y., Staquet C., 2016a. The atmospheric boundary layer during wintertime persistent inversions in the Grenoble valleys. Front. Earth Sci., 4(87). https://doi.org/10.3389/feart.2016.00070 [CrossRef] [Google Scholar]
- Largeron Y., Staquet C., 2016b. Persistent inversion dynamics and wintertime PM 10 air pollution in Alpine valleys. Atmos. Environ., 135: 92–108 https://doi.org/10.1016/j.atmosenv.2016.03.045 [CrossRef] [Google Scholar]
- Li X., Wang L., Chen D., Yang K., Xue B., Sun L., 2013. Near-surface air temperature lapse rates in mainland China during 1962–2011. Journal of Geophys. Research: Atmospheres, 118(14): 7505–7515. https://doi.org/10.1002/jgrd.50553 [CrossRef] [Google Scholar]
- Li Y., Yan J., Sui X., 2012. Tropospheric temperature inversion over central China. Atmospheric Research, 116: 105–115. [CrossRef] [Google Scholar]
- Lundquist J. D., Pepin N., Rochford C., 2008. Automated algorithm for mapping regions of cold-air pooling in complex terrain. Journal Geophysical Research, 113: D22107. [CrossRef] [Google Scholar]
- Mahrt L., Richardson S., Seaman N., Stauffer D., 2010. Non-stationary drainage flows and motions in the cold pool. Tellus, 62: 698–705. https://doi.org/10.1111/j.1600-0870.2010.00473.x [CrossRef] [Google Scholar]
- Mountain Research Initiative EDW Working Group, 2015. Elevation-dependent warming in mountain regions of the world. Nature Clim. Change, 5: 424–430. https://doi.org/10.1038/nclimate2563 [CrossRef] [Google Scholar]
- Nigrelli G., Fratianni S., Zampollo A., Turconi L., Chiarle M., 2017. The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps. Theor Applied Climatol., 131: 1479–1491. doi: 10.1007/s00704-017-2066-0 [Google Scholar]
- Paraschiv V., 2010. Conditions and causes in the evolution of agriculture in the Georgeu depression.GEOREVIEW: Scientific Annals of Stefan cel Mare University of Suceava, Geography Series, 19(1): 143–152. [Google Scholar]
- Pepin N., Norris J. R., 2005. An examination of the differences between surface and free-air temperature trend at high-elevation sites: Relationships with cloud cover, snow cover, and wind. Journal Geophys. Res., 110: D24112. https://doi.org/10.1029/2005JD006150 [CrossRef] [Google Scholar]
- Pepin N., Seidel D. J., 2005. A global comparison of surface and free-air temperatures at high elevations. J. Geophys. Res., 110(3): 1–15. https://doi.org/10.1029/2004JD005047. [Google Scholar]
- Rolland C., 2003. Spatial and seasonal variations of air temperature lapse rates in alpine regions. J. Climate, 16: 1032–1046. https://doi.org/10.1175/1520-0442. [CrossRef] [Google Scholar]
- Rome S., Giorgetti J.-P., 2007. La montagne corse et ses caractéristiques climatiques. La Météorologie, 859: 51–52. DOI: 10.4267/2042/14846 [Google Scholar]
- Rupp D. E., Shafer S. L., Daly C., Jones J. A., Frey S. J. K., 2020. Temperature gradients and inversions in a forested Cascade Range basin: Synoptic- to local-scale controls. Journal of Geophysical Research Atmospheres, 125. e2020JD032686. https://doi.org/10.1029/2020JD032686 [Google Scholar]
- Schlaghamersky J., Devetter M., Hanel L., Tajovsky K., Stary J., Tuf H., Pizl V., 2014. Soil fauna across Central European sandstone ravines with temperature inversion: From cool and shady to dry and hot places. Selected papers from XVI International Colloquium on Soil Zoology & XIII International Colloquium on Apterygota, Coimbra, 2012. Applied Soil Ecology, 83: 30–38. [CrossRef] [Google Scholar]
- Sheridan F., Vosper S. B., Brown A. R., 2014. Characteristics of cold pools observed in narrow valleys and dependence on external conditions. Quarterly Journal of the Royal Meteorological Society, 140: 715–728. https://doi.org/10.1002/qj.2159 [CrossRef] [Google Scholar]
- Sheridan P. F., 2019. Synoptic-flow interaction with valley cold-air pools and effects on cold-air pool persistence: Influence of valley size and atmospheric stability. Quarterly Journal of the Royal Meteorological Society, 145: 1636–1659. https://doi.org/10.1002/qj.3517 [CrossRef] [Google Scholar]
- Vitasse Y., Klein G., Kirchner J. W., Rebetez M., 2017. Intensity, frequency, and spatial configuration of winter temperature inversions in the closed La Brévine valley, Switzerland. Theor. Appl. Climatol., 130: 1073–1083. https://doi.org/10.1007/s00704-016-1944-1. [CrossRef] [Google Scholar]
- Vosper S. B., Brown A. R., 2008. Numerical simulations of sheltering in valleys: The formation of night-time cold-air pools. Boundary-Layer Meteorology, 127: 429–448. https://doi.org/10.1007/s10546-008-9272-3 [CrossRef] [Google Scholar]
- Vosper S. B., Hughes J. K., Lock A. P., Sheridan P. F., Ross A. N., Jemmett-Smith B. C., Brown A. R., 2014. Cold pool formation in a narrow valley. Quarterly Journal of the Royal Meteorological Society, 140: 699–714. https://doi.org/10.1002/qj.2160 [CrossRef] [Google Scholar]
- Wang S. Y., Hipps L. E., Chung O. Y., Gillies R. R., Martin R., 2015. Long-term winter inversion properties in a mountain valley of the Western United States and implications on air quality. Journal of Applied Meteorology and Climatology, 5412. https://doi.org/10.1175/JAMC-D-15-0172.1 [Google Scholar]
- Williams R., Thorp T., 2015. Characteristics of springtime nocturnal temperature inversions in a high latitude environment. Weather, 70: 37–43. https://doi.org/10.1002/wea.2554 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.