Climat urbain
Open Access
Volume 17, 2020
Climat urbain
Article Number 2
Number of page(s) 24
Published online 16 February 2021
  • Akbari H., Pomerantz M., Taha H., 2001. Cool Surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas. Solar Energy, 70(3), 295–310. doi: 10.1016/S0038-092X(00)00089-X. [Google Scholar]
  • Alonso L., Renard F., 2019. Integrating Satellite-Derived Data as Spatial Predictors in Multiple Regression Models to Enhance the Knowledge of Air Temperature Patterns. Urban Science, 3(4), 101. doi: 10.3390/urbansci3040101. [Google Scholar]
  • Alonso L., Renard F., 2020. A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context. International Journal of Environmental Research and Public Health, 17(3), 1004. doi: 10.3390/ijerph17031004. [Google Scholar]
  • Anselin L., 1995. Local Indicators of Spatial Association - LISA. Geographical Analysis, 27(2), 93–115. doi: 10.1111/j.1538-4632.1995.tb00338.x. [Google Scholar]
  • Oleg A., Križan J., Marki A., Bukovec D., 2001. Spatio-Temporal Interpolation of Climatic Variables over Large Region of Complex Terrain Using Neural Networks. Ecological Modelling, 138(1), 255–63. doi: 10.1016/S0304-3800(00)00406-3. [Google Scholar]
  • Benas N., Chrysoulakis N., Cartalis C., 2017. Trends of Urban Surface Temperature and Heat Island Characteristics in the Mediterranean. Theoretical and Applied Climatology, 130(3), 807–816. doi: 10.1007/s00704-016-1905-8. [Google Scholar]
  • Bobb J., Roger D., Peng M., Dominici F., 2014. Heat-Related Mortality and Adaptation to Heat in the United States. Environmental Health Perspectives, 122(8), 811–816. doi: 10.1289/ehp.1307392. [Google Scholar]
  • Boer E., de Beurs K., Hartkamp A., 2001. Kriging and Thin Plate Splines for Mapping Climate Variables. International Journal of Applied Earth Observation and Geoinformation, 3(2), 146–154. doi: 10.1016/S0303-2434(01)85006-6. [Google Scholar]
  • Brandsma T., Wolters D., 2012. Measurement and Statistical Modeling of the Urban Heat Island of the City of Utrecht (the Netherlands). Journal of Applied Meteorology and Climatology, 51(6), 1046–1060. [Google Scholar]
  • Breiman L. Friedman J., Olshen R., Stone C., 1984. Classification and Regression Trees. CRC Press. [Google Scholar]
  • Breiman L., 1996. Bagging Predictors. Machine Learning, 4(2), 123–140. doi: 10.1007/BF00058655. [Google Scholar]
  • Cantat O., 2004. L’îlot de chaleur urbain parisien selon les types de temps. Norois - Environnement, aménagement, société, 191, 75–102. doi: 10.4000/norois.1373. [Google Scholar]
  • Carrega P., Martin N., 2017. Le climat urbain de Nice, dans un contexte méditerranéen. Actes de l’Association Internationale de Climatologie, Sfax (Tunisie), 6 pages. [Google Scholar]
  • Carrega P., Rosa F., 2005. Aspects Du Climat Urbain de Nice : Îlot de Chaleur, Îlot de Fraîcheur, Effets de Paroi. Publications de l’Association Internationale de Climatologie, 18. Gênes, 8. [Google Scholar]
  • Chapman S., Watson J., Salazar A., Thatcher M., McAlpine C., 2017. The Impact of Urbanization and Climate Change on Urban Temperatures: A Systematic Review. Landscape Ecology, 32(10), 1921–1935. doi: 10.1007/s10980-017-0561-4. [Google Scholar]
  • Chen A., Sun R., Chen D., 2012. Studies on Urban Heat Island from a Landscape Pattern View: A Review. Acta Ecologica Sinica, 32, 4553–4565. doi: 10.5846/stxb201106280965. [Google Scholar]
  • Chen X., Zhao H., Li P., Yin J., 2006. Remote Sensing Image-Based Analysis of the Relationship between Urban Heat Island and Land Use/Cover Changes. Remote Sensing of Environment, 104, 133–146. doi: 10.1016/j.rse.2005.11.016. [Google Scholar]
  • Chen Y., Quan J., Zhan W., Guo Z., 2016. Enhanced Statistical Estimation of Air Temperature Incorporating Nighttime Light Data. Remote Sensing, 8(8), 656. doi: 10.3390/rs8080656. [Google Scholar]
  • Cristóbal J., Ninyerola M., Pons X., 2008. Modeling Air Temperature through a Combination of Remote Sensing and GIS Data. Journal of Geophysical Research: Atmospheres, 113(D13). doi: 10.1029/2007JD009318. [Google Scholar]
  • Cristobal J., Ninyerola M., Pons X., Pla M., 2006. Improving Air Temperature Modelization by Means of Remote Sensing Variables. IEEE International Symposium on Geoscience and Remote Sensing, 2251–2254. [Google Scholar]
  • De Ridder K., Maiheu B., Lauwaet D., Daglis I., Keramitsoglou I., Kourtidis K., Manunta P., Paganini M., 2017. Urban Heat Island Intensification during Hot Spells -The Case of Paris during the Summer of 2003. Urban Science, 1(1), 3. doi: 10.3390/urbansci1010003. [Google Scholar]
  • Dempster P., 1969. Elements of Continuous Multivariate Analysis. Reading, Mass.: Addison-Wesley Pub. Co. [Google Scholar]
  • Dempster P., 1969. Upper and Lower Probability Inferences for Families of Hypotheses with Monotone Density Ratios. The Annals of Mathematical Statistics, 40(3), 953–969. doi: 10.1214/aoms/1177697600. [Google Scholar]
  • Di Paola F., Ricciardelli E., Cimini D., Cersosimo A., Di Paola A., Gallucci D., Gentile S., Geraldi E., Larosa S., Nilo S., Ripepi E., Romano F., Sanò P., Viggiano M., 2018. MiRTaW: An Algorithm for Atmospheric Temperature and Water Vapor Profile Estimation from ATMS Measurements Using a Random Forests Technique. Remote Sensing, 10(9), 1398. doi: 10.3390/rs10091398. [Google Scholar]
  • Dormann F., Elith J., Bacher S., Buchmann C., Carl C., Carré G., García Marquéz J., Gruber B., Lafourcade B., Leitão P., Münkemüller T., McClean C., Osborne P., Reineking B., Schröder B., Skidmore A., Zurell D., Lautenbach S., 2013. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography, 36(1), 27–46. doi: 10.1111/j.1600-0587.2012.07348.x. [Google Scholar]
  • Dousset B., Gourmelon F., 2003. Satellite Multi-Sensor Data Analysis of Urban Surface Temperatures and Landcover. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 43–54. doi: 10.1016/S0924-2716(03)00016-9. [Google Scholar]
  • Dousset B., Gourmelon F., Laaidi K., Zeghnoun A., Giraudet E., Bretin P., Mauri E., Vandentorren S., 2011. Satellite Monitoring of Summer Heat Waves in the Paris Metropolitan Area. International Journal of Climatology, 31(2), 313–23. doi: 10.1002/joc.2222. [Google Scholar]
  • Fallmann J., Forkel R., Emeis S., 2016. Secondary Effects of Urban Heat Island Mitigation Measures on Air Quality. Atmospheric Environment, 125, 199–211. doi: 10.1016/j.atmosenv.2015.10.094. [Google Scholar]
  • Foissard X., Dubreuil V., Quénol H., 2019. Defining Scales of the Land Use Effect to Map the Urban Heat Island in a Mid-Size European City: Rennes (France). Urban Climate, 29, 100490. doi: 10.1016/j.uclim.2019.100490. [Google Scholar]
  • Getis A., Ord J., 1996. A Research Agenda for Geographic Information Science. Spatial analysis and modeling in a GIS environment. Robert.B. McMaster, E. Lynn Usery. [Google Scholar]
  • Getis A., Ord J., 1992. The Analysis of Spatial Association by Use of Distance Statistics - Getis - 1992 - Geographical Analysis - Wiley Online Library. Geographical Analysis, 24(3). [Google Scholar]
  • GIEC, 2019. Rapport spécial du GIEC sur le réchauffement planétaire de 1,5°C. Organisation météorologique mondiale. Retrieved January 6, 2020. [Google Scholar]
  • Guo Y., Han J., Zhao X., Dai X., Zhang H., 2020. Understanding the Role of Optimized Land Use/Land Cover Components in Mitigating Summertime Intra-Surface Urban Heat Island Effect: A Study on Downtown Shanghai, China. Energies, 13(7), 1678. doi: 10.3390/en13071678. [Google Scholar]
  • Hastie T., Tibshirani R., Friedman J., 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer-Verlag. [Google Scholar]
  • Hengl T., Heuvelink G., Perčec Tadić M., Pebesma E., 2012. Spatio-Temporal Prediction of Daily Temperatures Using Time-Series of MODIS LST Images. Theoretical and Applied Climatology, 107(1), 265–277. doi: 10.1007/s00704-011-0464-2. [Google Scholar]
  • Jarvis C., Stuart N., 2001. A Comparison among Strategies for Interpolating Maximum and Minimum Daily Air Temperatures. Part II: The Interaction between Number of Guiding Variables and the Type of Interpolation Method. Journal of Applied Meteorology, 40(6), 1075–1084. [Google Scholar]
  • Jin S., Sader S., 2005. Comparison of Time Series Tasseled Cap Wetness and the Normalized Difference Moisture Index in Detecting Forest Disturbances. Remote Sensing of Environment, 94, 364–372. doi: 10.1016/j.rse.2004.10.012. [Google Scholar]
  • Journal officiel du Sénat, 2012. Fermetures de Stations Météo-France et Avenir Du Service Public Météorologique Français. [Google Scholar]
  • Kastendeuch P., Philips N., Nerry F., Roupioz L., Colin J., Luhahe R., Najjar G., 2016. Mesures pour l’étude des ambiances climatiques à Strasbourg lors de la canicule de juillet 2015. Actes du colloque de l’Association Internationale de Climatologie, Besançon. [Google Scholar]
  • Katsoulis D., Theoharatos G., 1985. Indications of the Urban Heat Island in Athens, Greece. Journal of Climate and Applied Meteorology, 24(12), 1296–1302. doi: 10.1175/1520-0450(1985)024<1296:IOTUHI>2.0.CO;2. [Google Scholar]
  • Köppen W., 1900. Versuch Einer Klassifikation Der Klimate, Vorzugsweise Nach Ihren Beziehungen Zur Pflanzenwelt. (Schluss). Geographische Zeitschrift, 6(12), 657–679. [Google Scholar]
  • Kottek M., Grieser J., Beck C., Rudolf B., Rubel F., 2006. World Map of the Köppen-Geiger Climate Classification Updated. Meteorologische Zeitschrift, 259–263. doi: 10.1127/0941-2948/2006/0130. [Google Scholar]
  • Kukla G., Gavin J., Karl T., 1986. Urban Warming. Journal of Climate and Applied Meteorology, 25(9), 1265–1270. doi: 10.1175/1520-0450(1986)025<1265:UW>2.0.CO;2. [Google Scholar]
  • Kustas P., Norman M., 1996. Use of Remote Sensing for Evapotranspiration Monitoring over Land Surfaces. Hydrological Sciences Journal, 41(4), 495–516. doi: 10.1080/02626669609491522. [Google Scholar]
  • Leconte F., Bouyer J., Claverie R., Pétrissans M., 2017. Analysis of Nocturnal Air Temperature in Districts Using Mobile Measurements and a Cooling Indicator. Theoretical and Applied Climatology, 130(1), 365–376. doi: 10.1007/s00704-016-1886-7. [Google Scholar]
  • Lin L., Zhang Y., 2011. Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sensing, 3(7), 1535–1352. doi: 10.3390/rs3071535. [Google Scholar]
  • Yanxu L., Peng J., Wang Y., 2018. Efficiency of Landscape Metrics Characterizing Urban Land Surface Temperature. Landscape and Urban Planning, 180, 36–53. [Google Scholar]
  • McPherson G., Nowak D., Heisler G., Grimmond S., Souch C., Grant R., Rowntree R., 1997. Quantifying Urban Forest Structure, Function, and Value: The Chicago Urban Forest Climate Project. Urban Ecosystems, 1(1), 49–61. doi: 10.1023/A:1014350822458. [Google Scholar]
  • Meehl A., Tebaldi C., 2004. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science, 305(5686), 994–997. doi: 10.1126/science.1098704. [Google Scholar]
  • Mira M., Ninyerola M., Batalla M., Pesquer L., Pons X., 2017. Improving Mean Minimum and Maximum Month-to-Month Air Temperature Surfaces Using Satellite-Derived Land Surface Temperature. Remote Sensing, 9(12), 1313. doi: 10.3390/rs9121313. [Google Scholar]
  • Nguyen K., Liou Y., Li M., Anh Tran T., 2016. Zoning Eco-Environmental Vulnerability for Environmental management and Protection. Ecological Indicators, 69(2016). doi: 10.1016/j.ecolind.2016.03.026. [Google Scholar]
  • Nichol E., Hang To P., 2012. Temporal Characteristics of Thermal Satellite Images for Urban Heat Stress and Heat Island Mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 74, 153–162. doi: 10.1016/j.isprsjprs.2012.09.007. [Google Scholar]
  • OCDE, 2008. Handbook on Constructing Composite Indicators: Methodology and User Guide. OCDE. [Google Scholar]
  • Oke T., 1973. City Size and the Urban Heat Island. Atmospheric Environment, 1967(7), 769–779. doi: 10.1016/0004-6981(73)90140-6. [Google Scholar]
  • Oke T., 1978. Boundary Layer Climates, Londres. Géographie physique et Quaternaire, 32(3), 290–291. doi: 10.7202/1000310ar. [Google Scholar]
  • Oke T., 1981. Canyon Geometry and the Nocturnal Urban Heat Island: Comparison of Scale Model and Field Observations. Journal of Climatology, 1(3), 237–254. doi: 10.1002/joc.3370010304. [Google Scholar]
  • Reid S., Tibshirani R., Friedman J., 2016. A study of error variance estimation in lasso regression. Statistica Sinica, 26(1), 35–67. [Google Scholar]
  • Renard F., Alonso L., Fitts Y., Hadjiosif A., Comby J., 2019. Evaluation of the Effect of Urban Redevelopment on Surface Urban Heat Islands. Remote Sensing, 11(3), 299. doi: 10.3390/rs11030299. [Google Scholar]
  • Richard Y., Emery J., Dudek J., Pergaud J., Chateau-Smith C., Zito S., Rega M., Vairet T., Castel T., Thévenin T., Pohl B., 2018. How relevant are local climate zones and urban climate zones for urban climate research? Dijon (France) as a case study. Urban Climate, 26, 258–274. doi: 10.1016/j.uclim.2018.10.002. [Google Scholar]
  • Richard Y., Pohl B., Pergaud J., Zito S., Rega M., Thevenin T., Emery J., Vairet T., Dudek J., Thévenin D., Codet-Hache C., Dodet M.-F., 2017. Évaluation Des Effets Thermiques Des Leviers d’action Visant à Réduire l’Îlot de Chaleur Urbain : L’exemple de Dijon. Actes du colloque de l’Association Internationale de Climatologie, Sfax (Tunisie). [Google Scholar]
  • Rosenfeld A., Romm J., Akbari H., Pomerantz M., Taha H., 1996. Policies to Reduce Heat Islands: Magnitudes of Benefits and Incentives to Achieve Them. ACEEE Summer Study on Energy Efficiency in Buildings, 9, 177–186. [Google Scholar]
  • Sekulić A., Kilibarda M., Heuvelink G., Nikolić M., Bajat B., 2020. Random Forest Spatial Interpolation. Remote Sensing, 12(10), 1687. doi: 10.3390/rs12101687. [Google Scholar]
  • Shandas V., Voelkel J., Williams J., Hoffman J., 2019. Integrating Satellite and Ground Measurements for Predicting Locations of Extreme Urban Heat. Climate, 7(1), 5. doi: 10.3390/cli7010005. [Google Scholar]
  • Shapiro S., Wilk M., 1965. An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3–4), 591–611. doi: 10.1093/biomet/52.3-4.591. [Google Scholar]
  • Sobrino J., Jimenez-Munoz J.-C., Paolini L., 2004. Land Surface Temperature Retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90, 434–440. doi: 10.1016/j.rse.2004.02.003. [CrossRef] [Google Scholar]
  • Sun Y., Gao C., Li J., Wang R., Liu J., 2019. Quantifying the Effects of Urban Form on Land Surface Temperature in Subtropical High-Density Urban Areas Using Machine Learning. Remote Sensing, 11(8), 959. doi: 10.3390/rs11080959. [CrossRef] [Google Scholar]
  • Tenenhaus M., Pagès J., Ambroisine L., Guinot C., 2005. PLS Methodology to Study Relationships between Hedonic Judgements and Product Characteristics. Food Quality and Preference, 16(4), 315–325. doi: 10.1016/j.foodqual.2004.05.013. [Google Scholar]
  • Tibshirani R., 1996. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, Series B (Methodological), 58(1), 267–288. [Google Scholar]
  • Tsin K., Knudby A., Krayenhoff E., Chak Ho H., Brauer M., Henderson S., 2016. Microscale Mobile Monitoring of Urban Air Temperature. Urban Climate, 18, 58–72. doi: 10.1016/j.uclim.2016.10.001. [Google Scholar]
  • Wang M., He G., Zhang Z., Wang G., Zhang Z., Cao X., Wu Z., Liu X., 2017. Comparison of Spatial Interpolation and Regression Analysis Models for an Estimation of Monthly Near Surface Air Temperature in China. Remote Sensing, 9(12), 1278. doi: 10.3390/rs9121278. [Google Scholar]
  • Wang Y., Ji W., Yu X., Xu X., Jiang D., Wang Z., Zhuang D., 2014. The Impact of Urbanization on the Annual Average Temperature of the Past 60 Years in Beijing. Advances in Meteorology, e374987. [Google Scholar]
  • Weston J., 1988. Boundary Layer Climates. Quarterly Journal of the Royal Meteorological Society, 114(484), 1568–1568. doi: 10.1002/qj.49711448412. [Google Scholar]
  • Wold S., Sjöström M., Andersson P., Linusson A., Edman M., Lundstedt T., Nordén B., Sandberg M., Uppgård L.-L., 2000. Multivariate Design and Modelling in QSAR, Combinatorial Chemistry, and Bioinformatics. Molecular Modeling and Prediction of Bioactivity, edited by K. Gundertofte and F.S. Jørgensen. Boston, MA: Springer, US. [Google Scholar]
  • Xie M., Wang Y., Fu M., 2011. An Overview and Perspective about Causative Factors of Surface Urban Heat Island Effects. Progress in geography, 30(1), 35–41. doi: 10.11820/dlkxjz.2011.01.004. [Google Scholar]
  • Yang Q., Huang X., Li J., 2017. Assessing the Relationship between Surface Urban Heat Islands and Landscape Patterns across Climatic Zones in China. Scientific Reports, 7. doi: 10.1038/s41598-017-09628-w. [Google Scholar]
  • Zhang Z., Du Q., 2019. A Bayesian Kriging Regression Method to Estimate Air Temperature Using Remote Sensing Data. Remote Sensing, 11(7), 767. doi: 10.3390/rs11070767. [Google Scholar]
  • Zhu W., Lű A., Jia S., 2013. Estimation of Daily Maximum and Minimum Air Temperature Using MODIS Land Surface Temperature Products. Remote Sensing of Environment, 130, 62–73. doi: 10.1016/j.rse.2012.10.034. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.