Open Access
Issue |
Climatologie
Volume 16, 2019
|
|
---|---|---|
Page(s) | 23 - 51 | |
DOI | https://doi.org/10.4267/climatologie.1374 | |
Published online | 10 April 2020 |
- Adler R. F. et Negri A., 1993. Estimation of monthly rainfall over Japan and surrounding waters from a combination of low orbit microwave and geosynchronous IR data. Journal of Applied Meteorology, 32, 335–356. https://doi.org/10.1175/1520-0450(1993)032<0335:EOMROJ>2.0.CO;2 [CrossRef] [Google Scholar]
- Adler R. F., Huffman G., Chang A., Ferraro R., Xie P., Janoviak J., Rudolf B., Schneider U., Curtis S., Bolvin D., Gruber A., Susskind J., Arkin P. et Nelkin E., 2003. The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J ournal of Hydrometeorology, 4, 1147–1167. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 [CrossRef] [Google Scholar]
- Anagnostou E. N. et Kummerow C., 1997. Stratiform and convective classification of rainfall using SSM/I 85-GHz brightness temperature observations. Journal of Atmospheric and Oceanic Technology, 14, 570–575. https://doi.org/10.1175/1520-0426(1997)014<0570:SACCOR>2.0.CO;2 [CrossRef] [Google Scholar]
- Atlas D. et Ludlam F. H., 1961: Multi-wavelenght radar reflectivity of hail storms. Quaterly Journal of the Royal Meteorological Society, 87, 523–534. https://doi.org/10.1002/qj.49708737407 [CrossRef] [Google Scholar]
- Bell T. L. et Kundu P. K., 1996. A study of the sampling error in satellite rainfall estimates using optimal averaging of data and a stochastic model. Journal of Climate, 9, 1251–1268. https://doi.org/10.1175/1520-0442(1996)009<1251:ASOTSE>2.0.CO;2 [CrossRef] [Google Scholar]
- Beltrando G. et Bergès J.-C., 2014. Water ressource assessment on Maghreb using global satellite products. Proc. International Geography Symposium GEOMED2013, Antalya, 10-13 juin 2013, 443–449. https://doi.org/10.1016/j.sbspro.2014.02.122 [Google Scholar]
- Berg W., Bilanow S., Chen R., Datta S., Draper D., Ebrahimi H., Farrar S., Linwood J., Kroodsma R., Mc Kague D., Payne V., Wang J., Wilheit T. et Xun Yang J., 2016. Intercalibration of the GPM Microwave Radiometer Constellation. Journal of Atmospheric and Oceanic Technology, 33, 2639–2654. https://doi.org/10.1175/JTECH-D-16-0100.1 [CrossRef] [Google Scholar]
- Bergès J.-C., Chopin F., Jobard I. et Roca R., 2010. EPSAT-SG, a satellite method for rainfall estimation; its concepts and implementation for the AMMA experiment. Annales Geophysicae, 28(1), 289–308. https://hal.archives-ouvertes.fr/hal-01136865/ [CrossRef] [Google Scholar]
- Boquist C. et Lee J., 2010. The HDF-EOS tools and information system website. The Earth Observer, 22(4), 13–15. https://support.hdfgroup.org/pubs/papers/The%20New%20HDF-EOS%20Tools%20and%20Information.pdf [Google Scholar]
- Carn M., Dagorne D., Guillot B. et Lahuec J.-P, 1989. Estimation des pluies en temps réel en Afrique Soudano-Sahélienne, essai d’une calibration issue du champ de température de surface. Veille climatique satellitaire, 28, 47–54. [Google Scholar]
- Christy J. R., Spencer W., Norris W., Braswell W. et Parker D., 2003. Error estimates of version 5.0 of MSU-AMSU bulk atmospheric temperatures. Journal of Atmospheric and Oceanic Technologies, 20, 613–629. https://doi.org/10.1175/1520-0426(2003)20<613:EEOVOM>.0.CO;2 [CrossRef] [Google Scholar]
- Chuntao L. et Zipster E., 2005. Global distribution of convection of convection penetrating the tropical tropopause. Journal of Geophysical Research, 110(23104), 1–12. https://doi.org/10.1029/2005JD006063 [Google Scholar]
- Draper D. W., Nevell D., Wentz F., Krimchansy S. et Skofronik G., 2015. The Global Precipitation Measurement (GPM) Microwave Imager (GMI), instrument overview and early on-orbit performance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7), 3452–3462. https://doi.org/10.1109/JSTARS.2015.2403303 [CrossRef] [Google Scholar]
- Ebert E. E. et M. J. Manton, 1998. Performance of satellite rainfall estimation algorithm during TOGA-COARE. Journal of Atmospheric Science, 55, 1537–1557. https://doi.org/10.1175/1520-0469(1998)055<1537:POSREA>2.0.CO;2 [CrossRef] [Google Scholar]
- Eumetsat, 2009. International Data Collection System. Eumetsat Technical Document, 10(1), 11 p., http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CGMS_02&RevisionSelectionMethod=LatestReleas ed&Rendition=Web [Google Scholar]
- Eumetsat, 2011. AVHRR level 1B product guide. Eumetsat Technical Document, 4(29), EUM/OPS-EPS/MAN/04/0029 V3A, 98 p., http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_AVHRR_L1B_PRODUCT_GUIDE&RevisionSelect ionMethod=LatestReleased&Rendition=Web [Google Scholar]
- Ferraro R. R., Kusselson S. et Colton M., 1998. An introduction to passive microwave remote sensing and its applications to meteorological analysis and forecasting. National Weather Digest, 22(3), 11–23 http://www.rpoattex.com [Google Scholar]
- GEWEX, 2012. Document plan for 2013 and beyond, Imperatives. GEWEX Document series 2012-1, novembre 2012, 48 p. http://www.gewex.org/gewex-content/uploads/2015/02/GEWEX_Imperatives_final.pdf [Google Scholar]
- Giorgi F., Im E. S. et Coppola E., 2011. Higher hydroclimatic intensity with global warming. Journal of Climate, 24, 5309–5324. https://doi.org/10.1175/2011JCLI3979.1 [CrossRef] [Google Scholar]
- Gonzalez A., Perez J. C., Munoz J., Mendez Z. et Amat M., 2012. Watershed image segmentation and cloud classification from multispectral MSG-SEVIRI imagery. Advances in space research, 49(1), 135–142. https://doi.org/10.1016/j.asr.2011.09.023 [CrossRef] [Google Scholar]
- Hanna J. W., Schultz D. et Irving A., 2006. Cloud-top temperature for precipitating winter clouds. Bulletin of the American Meteorological Society, 47, 351–359. https://doi.org/10.1175/2007JAMC1549.1 [Google Scholar]
- Harris I., Jones P. D., Osborn T. J. & Lister D. H., 2014. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset. International Journal of Climatology, 34, 623–642. https://doi.org/10.1002/joc.3711 [CrossRef] [Google Scholar]
- Hielkema J. U. et Snijders F. L., 1994. Operationnal use of satellite remote sensing and satellite communication technology for global food security and desert locust control by FAO The ARTEMIS and DIANA systems. Acta Astronica, 32(9), 603–616. https://doi.org/10.1016/0094-5765(94)90071-X [CrossRef] [Google Scholar]
- Hong Y., Hsu K. L., Sorooshian S. et Gao X., 2004. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. Journal of Applied Meteorology, 43, 1834–1853. https://doi.org/10.1175/JAM2173.1 [CrossRef] [Google Scholar]
- Hou A., Kakar R., Neeck N., Azarbarzin A., Kummerow C., Kojima M., Oki R., Nakamura K. et Iguchi T., 2014. The Global Precipitation Measurement Mission. Bulletin of the American Meteorological Society, 95, 701–722. https://doi.org/10.1175/BAMS-D-13-00164.1 [CrossRef] [Google Scholar]
- Houze R. A., 2004. Mesoscale convective systems. Review of Geophysics, 42, 1–43. http://dx.doi.org/10.1029/2004RG000150 [CrossRef] [Google Scholar]
- Huffman G., 1997. Estimates of root-mean-square random errors for finite samples of estimated precipitation. Journal of Applied Meteorology, 36, 1176–1201. https://doi.org/10.1175/1520-0450(1997)036<1191:EORMSR>2.0.CO;2 [CrossRef] [Google Scholar]
- Huffman G., Bolvin D., Braithwaite D., Hsu K., Joyce R., Kidd C., Nelkin E., Sorooshian S. Tan J. et Xie P., 2019. Algorithm theoretical document; NASA GPM; Integrated Multi-satellite retrievals for GPM. NASA technical document ATBD V06, 38 p., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06_0.pdf [Google Scholar]
- Iguchi T., Kozu T., Kwiatkoski J., Meneghini R., Awaka J. et Okamoto K., 2009. Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. Journal of the Meteorological Society of Japan, 87A, 1–30. https://doi.org/10.2151/jmsj.87A.1 [CrossRef] [Google Scholar]
- Iguchi T., Seto S., Meneghini R., Yoshida N., Awaka J., Le M., Chandrasekar V. et Kuboto T., 2015. GPM/DPR level-2, algorithm theoretical basis document. Technical document NASA/JAXA, 72 p. https://pmm.nasa.gov/sites/default/files/document_files/ATBD_DPR_201811_with_Appendix3b_0.pdf [Google Scholar]
- Jackson F. et Walton W. T., 1985. Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars. Journal of Geophysical Research, 90, 987–1004. https://doi.org/10.1029/JC090iC01p00987 [CrossRef] [Google Scholar]
- Jiang Y., Sun M. et Yang C., 2016. A generic framework for using multi-dimensional earth observations in GIS. Remote Sensing, 8(5), 382–390. https://doi.org/10.3390/rs8050382 [CrossRef] [Google Scholar]
- Jones P. D. et Hulme M., 1996. Calculating regional climatic time series for temperature and precipitation: methods and illustration. International Journal of Climatology, 16, 361–377. https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC53>3.0.CO;2-F [CrossRef] [Google Scholar]
- Joyce R., Janowiak J., Arkin P. et Xie P., 2004. CMORPH – A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503 https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 [Google Scholar]
- Karger D. K., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R., Zimmerman N., Linder H. et M. Kessler, 2017. Climatologies at high resolution for the earth’s land surface aeras. Scientific Data, 4, 1–19. https://doi.org/10.1038/sdata.2017.122 [CrossRef] [Google Scholar]
- Kim M., Im J., Haemi P., Seonyoung P., Myong-In L. et Myoung-Hwan A., 2017. Detection of overshooting cloud tops using Himawari-8 imagery. Remote sensing, 9(685), 1–19. https://doi.org/10.3390/rs9070685 [Google Scholar]
- Khomsi K., Mahe G., Tramblay Y., Sinan M. et Snoussi M., 2016. Regional impact of climate change : seasonal trends in extreme rainfall, run-off and temperature in two contrasting regions of Morocco. Natural Hazards and Earth System Sciences, 16, 1079–1090. https://doi.org/10.5194/nhess-16-1079-2016 [CrossRef] [Google Scholar]
- Kohonen T., 1982. Self organized formation of topological correct feature maps. Biological Cybernetics, 43(1), 59–69. https://doi.org/10.1007/BF00337288http://www.cnbc.cmu.edu/~tai/nc19journalclubs/Kohonen1982_Article_Self-organizedFormationOfTopol.pdf [Google Scholar]
- Kummerow C. et Giglio L., 1994. A passive microwave technique for estimating rainfall and vertical structure information from space. Journal of applied meteorology, 33, 3–18. https://doi.org/10.1175/1520-0450(1994)033%3C0003:APMTFE%3E2.0.CO;2 [CrossRef] [Google Scholar]
- Kummerow C., Randel D., Kulie M., Wang N., Ferraro R., Munchak S. et Petkovic V., 2015. The evolution of the Goddard profiling algorithm to a fully parametric scheme. Journal of atmospheric and oceanic technology, 32, 2265–2280. https://doi.org/10.1175/JTECH-D-15-0039.1 [CrossRef] [Google Scholar]
- Lebel T., Amani A. et Taupin J.-D., 1994. La pluie au Sahel, une variable rebelle à la régionalisation. In: Hoeffner M., Lebel T. & Monteny B., Interactions surfaces continentales/atmosphère – L’expérience Hapex-Sahel, Paris: ORSTOM, 353–372. https://www.documentation.ird.fr/hor/fdi:010008363 [Google Scholar]
- Li N., Zhu Y. et Wang Z., 2015. A discussion on the applicable condition of Raleigh scattering. International Journal of Remote Sensing Applications, 5, 62–66. https://doi.org/10.14355/ijrsa.2015.05.007 [CrossRef] [Google Scholar]
- Lovejoy S. et Austin G. L., 1979. The delineation of rain areas from visible and IR satellite data for GATE and mid-latitudes. Atmosphere-Ocean, 17(1), 79–92. https://doi.org/10.1080/07055900.1979.9649053 [Google Scholar]
- Milford J.R. et Dugdale G., 1990. Estimation of rainfall using geostationary satellite data. Butterworth. Proc. 48th spring school in Agronomic Sciences, University of Nottingham, April 1989, 16 p. https://doi.org/10.1016/B978-0-408-04767-8.50010-4 [Google Scholar]
- NASDA, 2001. TRMM data users handbook. NASDA technical document, Earth observation center, 211 p., https://www.eorc.jaxa.jp/TRMM/document/text/handbook_e.pdf [Google Scholar]
- Panegrossi G., Casella D., Dietrich S., Marra A. C., Sano P., Baldini L., Roberto N., Benchini R., Vulpiani G., Petracca M. et Porcu F., 2016. Use of the GPM constellation for monitoring heavy precipitation events over the Mediterrean region. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6), 1–21. https://doi.org/10.1109/JSTARS.2016.2520660 [CrossRef] [Google Scholar]
- Pellarin T., Abdou A., Chopin F., Jobard I. et Bergès J.-C., 2008. Using spaceborne radar to constrain satellite precipitation estimates over West Africa. Geophysical Research Letter, AGU, 35(2), 1–5. https://doi.org/10.1029/2007GL032243 [Google Scholar]
- Peterson T. C. et Vose R., 1997. An overview of the Global Historical Climatology Network temperature database. Bulletin of the American Meteorological Society, 78, 2837–2849. https://doi.org/10.1175/1520-0477(1997)078%3C2837:AOOTGH%3E2.0.CO;2 [CrossRef] [Google Scholar]
- Pollock D., O’Donnell G., Quinn P., Dutton M., Black A., Wilkinson M. E., Colli M., Stagnaro M., Lanza G. L., Lewis E., Kilsby C. G. & O’Connell P. E., 2018. Quantifying and mitigating wind-induced undercatch in rainfall measurements. Water Ressource Research, 54, 3863–3875. https://doi.org/10.1029/2017WR022421 [CrossRef] [Google Scholar]
- Richards F. et Arkin P., 1981. On the relationship between satellite-observed cloud cover and precipitation. Monthly Weather Review, 109, 1081–1093. https://doi.org/10.1175/1520-0493(1981)109%3C1081:OTRBSO%3E2.0.CO;2 [CrossRef] [Google Scholar]
- Saddiqi D., 2017. Intempéries, l’axe Rabat-Salé sous l’eau. Huffington Post MG, 23/02/2017, https://www.huffpostmaghreb.com/entry/inondations-intemperies-sale_mg_14963090 [Google Scholar]
- Schmetz J. et Nuret M., 1987. Automatic tracking of high level clouds. ESA journal, 11, 257–286.Document en ligne [Google Scholar]
- Schneider U., Becker A. Finger P, Meyer-Christopher A., Ziese M. et Rudolf B., 2014. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115, 15–40. https://doi.org/10.1007/s00704-013-0860-x [CrossRef] [Google Scholar]
- Seto T., Kubota T., Igushi T, Takahashi N. et Oki T., 2009. An evaluation of over-land rain rate estimates by the Gsmap and Gprof algorithms; the role of low frequency channels. Journal of the Meteorological Society of Japan, 87A, 183–202. https://doi.org/10.2151/jmsj.87A.183 [CrossRef] [Google Scholar]
- Simpson J., Kummerow C., Tao W. et Adler R. F., 1996. On the Tropical Rainfall Measurement Mission. Meteorology and Atmospheric Physics, 60(1), 19–36. https://doi.org/10.1007/BF01029783 [CrossRef] [Google Scholar]
- Snijders F. L., 1991. Rainfall monitoring based on Meteosat data, a comparison of techniques applied to western Sahel. International Journal of Remote Sensing, 12(6), 1331–1347. https://doi.org/10.1080/01431169108929729 [CrossRef] [Google Scholar]
- Speirs P., Gabella M. et Berne A., 2017. A comparison between the GPM dual-frequency radar and ground-based radar precipitation rate in the Swiss Alps and Plateau. Journal of Hydrometeorology, 18, 1247–1269. https://doi.org/10.1175/JHM-D-16-0085.1 [CrossRef] [Google Scholar]
- Spencer R. W., Goodman H. et Hood R. E., 1989. Precipitation retrieval over land and ocean with the SSM/I : Identification and characteristics of the scattering signal. Journal of Atmospheric and Oceanic Technology, 6, 254–273. https://doi.org/10.1175/1520-0426(1989)006%3C0254:PROLAO%3E2.0.CO;2 [CrossRef] [Google Scholar]
- Stephens G., Winker D., Pelon J., Trepte C., Vane D., Yuhas C., Lecuyer T. et Lensock M., 2018. Cloudsat and Calipso within the A-train, ten years of actively observing the earth system. Bulletin of the American Meteorological Society, March issue, 569–581. https://doi.org/10.1175/BAMS-D-16-0324.1 [CrossRef] [Google Scholar]
- Taupin J.-D., Amani A. et Lebel T., 1998. Variabilité spatiale des pluies au Sahel, une question d’échelle. Actes de la conférence Water ressources variability in Africaduring the XXthcentury, Abidjan, Côte d’Ivoire, 143–151. https://www.documentation.ird.fr/hor/fdi:010028299 [Google Scholar]
- Tonnerre-Guérin M., 1976. A propos de quelques techniques d’utilisation des images satellites en météorologie. Contribution à l’analyse synoptique des latitudes moyennes de l’hémisphère Nord. Norois, 89, 5–31. https://www.persee.fr/doc/noroi_0029-182x_1976_num_89_1_3499 [Google Scholar]
- Ungersböck M., Rubel F., Fuchs T. et Rudolf B., 2002. Bias correction of global daily raingauge measurements. Physics and Chemistry of the Earth, 26, 411–414. https://www.vetmeduni.ac.at/fileadmin/v/oeffentliches-veterinaerwesen/RUBEL_pdf/PCE_03.pdf [CrossRef] [Google Scholar]
- Velden C., Harper B., Wells F., Beven J., Zehr R., Olander T., Mayfield M., Guard C., Lander M., Edson R., Avila L. Burton A., Turk M., Kikuchi A., Christian A., Caroff P. et Mc Crone P., 2006. The Dvorak tropical cyclone intensity estimation technique, a satellite‐based method that has endured for over 30 years. Bulletin of the American Meteorological Society, 87, 1195–1210. https://doi.org/10.1175/BAMS-87-9-1195 [CrossRef] [Google Scholar]
- Vincente G.A., Scofield R. A. et P. Menzel, 1998. The operationnal GOES infrared rainfall estimation technique. Bulletin of the American Meteorological Society, 79(9), 1983–1998. https://doi.org/10.1175/1520-0477(1998)079%3C1883:TOGIRE%3E2.0.CO;2 [Google Scholar]
- Wilheit T. T., Chang A., Rao M., Rodgers E. et Theon J., 1977. A satellite technique for quantitavely mapping rainfall rates over the oceans. Journal of Applied Meteorology, 16, 551–560. https://doi.org/10.1175/1520-0450(1977)016%3C0551:ASTFQM%3E2.0.CO;2 [CrossRef] [Google Scholar]
- Xie P. et Arkin P. A., 1995. An intercomparison of gauge observations and satellite estimates of monthly precipitation. Journal of Applied Meteorology, 34, 1143–1160. https://doi.org/10.1175/1520-0450(1995)034%3C1143:AIOGOA%3E2.0.CO;2 [CrossRef] [Google Scholar]
- Yang S. et Nesbitt S., 2014. Statistical properties of precipitation as observed by the TRMM precipitation radar. Geophysical Research Letter, 41(15), 5636–5643. https://doi.org/10.1002/2014GL060683 [CrossRef] [Google Scholar]
- Zhang X., Zheng X., Yang C. et Luo S., 2013. A new weighting function for estimating microwave sounding unit Channel 4 temperature trends simulated by CMIP5 climate models. Advances in Atmospheric Science, 30(3), 779–789. https://doi.org/10.1007/s00376-013-2152-x [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.