Open Access
Issue |
Climatologie
Volume 14, 2017
|
|
---|---|---|
Page(s) | 18 - 47 | |
DOI | https://doi.org/10.4267/climatologie.1255 | |
Published online | 23 January 2018 |
- Abe Y., Abe-Ouchi A., Sleep N., Zahnle K., 2011 : Habitable Zone Limits for Dry Planets. Astrobiology, 11 (5), 443–460. DOI: 10.1089/ast.2010.0545. [NASA ADS] [CrossRef] [Google Scholar]
- Abe Y., Numaguti A., Komatsu G., Kobayashi Y., 2005 : Four climate regimes on a land planet with wet surface: effects of obliquity change and implications for ancient Mars. Icarus, 178 (1), 27–39. DOI: 10.1016/j.icarus.2005.03.009. [NASA ADS] [CrossRef] [Google Scholar]
- Anglada-Escudé G., Amado P.J., Barnes J., Berdiñas Z.M., Butler R.P., Coleman G.A.L., De la Cueva I., Dreizler S., Endl M., Giesers B., Jeffers S.V., Jenkins J.S., Jones H.R.A., Kiraga M., Kürster M., López-González M.J., Marvin C.J., Morales N., Morin J., Nelson R.P., Ortiz J.L., Ofir A., Paardekooper S.-J., Reiners A., Rodríguez E., Rodríguez-López C., Sarmiento L.F., Strachan J.P., Tsapras Y., Tuomi M., Zechmeister M., 2016 : A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature, 536, 437–440. DOI: 10.1038/nature19106. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Arbab A.I., 2009 : The length of the day: A cosmological perspective. Progress in Physics, 1,, 8–11. [Google Scholar]
- Arakawa H., 1969 : Climates of Northern and Eastern Asia. World Survey of Climatology, 8, Amsterdam: Elsevier Scientific Publishing Company, 248 p. [Google Scholar]
- Asnani G.C., 1993 : Tropical meteorology. Pune (India): G. C. Asnani, 1202 p. [Google Scholar]
- Astronoo, 2017 : Catégories d’étoiles. http://www.astronoo.com/fr/articles/etoiles-categories.html. [Google Scholar]
- Barnes R., Raymond S.N., Jackson B., Greenberg R., 2008 : Tides and the evolution of planetary habitability. Astrobiology, 8, 557–568. DOI: 10.1089/ast.2007.0204. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Barry R.G., Chorley R.J., 2003 : Atmosphere, Weather & Climate. London, New York: Routledge, 421 p. [Google Scholar]
- Beaurepaire M., 1994 : L’observation thermique de l’atmosphère en France et dans les pays proches aux dix-septième et dix-huitième siècles : L’invention du thermomètre. Le traitement des données anciennes. Université Paris IV : Thèse de Doctorat, 498 p. [Google Scholar]
- Benton M.J., Newell A.J., 2014 : Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Research, 25, 1308–1337. DOI: 10.1016/j.gr.2012.12.010. [CrossRef] [Google Scholar]
- Berger A., 1978 : Long-term variations of daily insolation and quaternary climatic changes. Journal of the Atmospheric Sciences, 35 (12), 2362–2367. DOI: 10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2. [NASA ADS] [CrossRef] [Google Scholar]
- Budyko M.I., 1969 : The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611–619. DOI: 10.1111/j.2153-3490.1969.tb00466.x. [CrossRef] [Google Scholar]
- Čadek O., Tobie G., Van Hoolst T., Masse M., Choblet G., Lefevre A., Mitri G., Baland R.-M., Behounkova M., Bourgeois O., Trinh A., 2016 : Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape and libration data. Geophysical Research Letters, 43 (11), 5653–5660. DOI: 10.1002/2016GL068634. [NASA ADS] [CrossRef] [Google Scholar]
- Caldeira K., Kasting J.F., 1992 : Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature, 359, 226–228. DOI: 10.1038/359226a0. [NASA ADS] [CrossRef] [Google Scholar]
- Camberlin P., 1994 : Les précipitations dans la Corne orientale de l’Afrique : climatologie, variabilité et connexions avec quelques indicateurs océano-atmosphériques. Université de Bourgogne (Dijon) : Thèse de Doctorat, 414 p. [Google Scholar]
- Cantor B.A., 2007 : MOC observations of the 2001 Mars planet-encircling dust storm. Icarus, 186, 60–96. DOI: 10.1016/j.icarus.2006.08.019. [CrossRef] [Google Scholar]
- Carone L., Keppens R., Decin L., 2013 : Atmospheric dynamics on tidally locked Earth-like planets in the habitable zone of an M dwarf star. In: Exploring the formation and evolution of planetary systems , Proceedings of the International Astronomical Union, IAU Symposium, 299, 376–377. DOI: 10.1017/S1743921313008995. [Google Scholar]
- Casoli F., Encrenaz T., 2005 : Planètes extrasolaires. Paris : Belin – Pour la Science, 160 p. [Google Scholar]
- Causeret P., Sarrazin L., 2001 : Les saisons et les mouvements de la Terre. Paris : Belin - Pour La Science, 127 p. [Google Scholar]
- Charbonneau D., Berta Z.K., Irwin J., Burke C.J., Nutzman P., Buchhave L.A., Lovis C., Bonfils X., Latham D.W., Udry S., Murray-Clay R.A., Holman M.J., Falco E.E., Winn J.N., Queloz D., Pepe F., Mayor M., Delfosse X., Forveille T., 2009 : A super-Earth transiting a nearby low-mass star. Nature, 462, 891–894. DOI: 10.1038/nature08679. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Charnay B., Forget F., Wordsworth R., Leconte J., Millour E., Codron F., Spiga A., 2013 : Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. Journal of Geophysical Research: Atmospheres, 118, 1–18. DOI: 10.1002/jgrd.50808. [NASA ADS] [CrossRef] [Google Scholar]
- Das P.K., 1986 : Monsoons. World Meteorological Organization, N°613, 155 p. [Google Scholar]
- Dauvergne J.-L., Binzel R., 2016 : Sur Pluton, le climat change beaucoup. Ciel & Espace, 548, 36–39. [Google Scholar]
- Delaygue G., Urgelli B., 2003 : Étude des facteurs contrôlant la température de surface d’une planète. Éduscol, ENS de Lyon. http://planet-terre.ens-lyon.fr/article/explication-temperature.xml. [Google Scholar]
- Dettwiller J., 1982 : Chronologie de quelques événements météorologiques, en France et ailleurs. Monographie de la Météorologie Nationale, 1. Paris : Direction de la Météorologie, 8 p. [Google Scholar]
- Dhonneur G., 1985 : Traité de météorologie tropicale. Paris : Météo-France, 151 p. [Google Scholar]
- Dinwiddie R., Gater W., Sparrow G. et Stott C., 2013 : Étoiles et Planètes. Larousse : Sage, 352 p. [Google Scholar]
- Dobrovolskis A.R., 2013 : Insolation on exoplanets with eccentricity and obliquity. Icarus, 226 (1), 760–776. DOI : 10.1016/j.icarus.2013.06.026. [CrossRef] [Google Scholar]
- Dole S.H., 1964 : Habitable planets for man. New York : Blaisdell Pub. Co [1st ed.]. [Google Scholar]
- Donnadieu Y., Goddéris Y., Ramstein G., Nédélec A., Meert J., 2004 : A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature, 428, 303–306. DOI : 10.1038/nature02408. [CrossRef] [PubMed] [Google Scholar]
- Dressing C.D., Spiegel D.S., Scharf C.A., Menou K., Raymond S.N., 2010 : Habitable climates: the influence of eccentricity. The Astrophysical Journal, 721, 1295–1307. DOI : 10.1088/0004-637X/721/2/1295. [NASA ADS] [CrossRef] [Google Scholar]
- Encrenaz T., 1996 : Les planètes géantes. Paris : Belin – Coll. Regards sur la Science, 189 p. [Google Scholar]
- Encrenaz T., 2000 : Atmosphères planétaires. Paris : Belin - CNRS Editions, 151 p. [Google Scholar]
- Eriksson E., 1968 : Air-ocean-icecap interactions in relation to climatic fluctuations and glaciation cycles. Meteorological Monographs, 8, 68–92. DOI : 10.1007/978-1-935704-38-6_6. [Google Scholar]
- Escourrou G., 1981 : Climat et environnement. Les facteurs locaux du climat. Paris : Masson, 184 p. [Google Scholar]
- Feulner G., 2012 : The faint young Sun problem. Reviews of Geophysics, 50, RG2006, 29 p. DOI : 10.1029/2011RG000375. [Google Scholar]
- Fierro A., 1991 : Histoire de la météorologie. Paris : Denoël, 315 p. [Google Scholar]
- Fleurant C., Bourgeois O., Cornet T., Le Mouélic S., 2014 : Processus de dissolution sur Titan : un modèle d’évolution géomorphologique. Réunion des Sciences de la Terre, Pau, 29 octobre 2014, 22 p. [Google Scholar]
- Fluteau F., Besse J., Broutin J., Ramstein G., 2001 : The Late Permian climate. What can be inferred from climate modelling concerning Pangea scenarios and Hercynian range altitude?. Palaeogeography, Palaeoclimatology, Palaeoecology, 167 (1–2), 39–71. DOI : 10.1016/S0031-0182(00)00230-3. [CrossRef] [Google Scholar]
- Fontaine B., 1990 : Étude comparée des moussons indienne et ouest-africaine : caractéristiques, variabilité et téléconnexions. Université de Bourgogne (Dijon) : Thèse de Doctorat d’État (2 volumes), 233 + 278 p. [Google Scholar]
- Forget F., 2016 : Pluton : le ciel et les glaces. Pour la Science dossier n°90, 88–95. [Google Scholar]
- Forget F., Leconte J., 2014 : Possible climates on terrestrial exoplanets, Philosophical Transactions of the Royal Society 372, 20130084, 24 p. DOI : 10.1098/rsta.2013.0084. [Google Scholar]
- French R.G., Toigo A.D., Gierasch P.J., Hansen C.J., Young L.A., Sicardy B., Dias-Oliveira A., Guzewich S.D., 2015 : Seasonal variations in Pluto’s atmospheric tides. Icarus, 246, 247–267. DOI : 10.1016/j.icarus.2014.05.017. [NASA ADS] [CrossRef] [Google Scholar]
- Gater W., Wamplew A., 2013 : Petit Larousse de l’Astronomie. Larousse, 256 p. [Google Scholar]
- Geiger R., 1966 : The climate near the ground. Cambridge (Massachussets, USA) : Harvard University Press, 611 p. [Google Scholar]
- Gentilli J., 1971 : Climates of Australia and New Zealand. World Survey of Climatology, 13. Amsterdam : Elsevier Publishing Company, 405 p. [Google Scholar]
- Gierasch P., 2002 : Planetary science: The north-south Martian divide. Nature, 416, 269–270. DOI : 10.1038/416269a. [CrossRef] [Google Scholar]
- Gilliland R.L., 1989 : Solar evolution. Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section), 75 (1–2), 35–55. DOI : 10.1016/0031-0182(89)90183-1. [CrossRef] [Google Scholar]
- Gladstone G.R. & the New Horizons Science Team, 2016 : The atmosphere of Pluto as observed by New Horizons. Science, 351 (6279), aad8866, 1-6. DOI: 10.1126/science.aad8866. [NASA ADS] [CrossRef] [Google Scholar]
- Godolt M., Grenfell J.L., Hamann-Reinus A., Kitzmann D., Kunze M., Langematz U., Von Paris P., Patzer A.B.C., Rauer H., Stracke B., 2015 : 3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars. Planetary and Space Science, 111, 62–76. DOI : 10.1016/j.pss.2015.03.010. [NASA ADS] [CrossRef] [Google Scholar]
- Gough D.O., 1981 : Solar interior structure and luminosity variations. Solar Physics, 74, 21–34. DOI : 10.1007/BF00151270. [NASA ADS] [CrossRef] [Google Scholar]
- Grundy W.M., Buie M.W., Stansberry J.A., Spencer J.R., Schmitt B., 1999 : Near-infrared spectra of icy outer Solar System surfaces: remote determination of H2O ice temperatures. Icarus, 142, 536–549. DOI : 10.1006/icar.1999.6216. [NASA ADS] [CrossRef] [Google Scholar]
- Hart M.H., 1978 : The evolution of the atmosphere of the Earth. Icarus, 33 (1), 23–39. DOI : 10.1016/0019-1035(78)90021-0. [NASA ADS] [CrossRef] [Google Scholar]
- Harvard University, 2017 : Hadley Cells, Harvard University/John A. Paulson School of Engineering and Applied Sciences (SEAS); consulté sur www.seas.harvard.edu/climate/eli/research/equable/hadley.html. [Google Scholar]
- Havel M., 2011 : Modélisation des exoplanètes et de leur étoile hôte. Thèse de Doctorat, Université de Nice Sophia-Antipolis – Observatoire de la Côte d’Azur, 147 p. [Google Scholar]
- Heller R., 2015 : Better than Earth. Planets quite different from our own may be the best homes for life in the Universe. Scientific American, 312 (1), 32–39. DOI : 10.1038/scientificamerican0115-32. [CrossRef] [Google Scholar]
- Heller R., Armstrong J., 2014 : Superhabitable Worlds. Astrobiology, 14 (1), 50–66. DOI : 10.1089/ast.2013.1088. [NASA ADS] [CrossRef] [Google Scholar]
- Heller R., Barnes R., 2013 : Exomoon habitability constrained by illumination and tidal heating. Astrobiology, 13, 18–46. DOI : 10.1089/ast.2012.0859. [NASA ADS] [CrossRef] [Google Scholar]
- Heller R., Williams D., Kipping D., Limbach M.A., Turner E., Greenberg R., Sasaki T., Bolmont E., Grasset O., Lewis K., Barnes R., Zuluaga J.I., 2014 : Formation, habitability, and detection of extrasolar moons. Astrobiology. DOI : 10.1089/ast.2014.1147. [Google Scholar]
- Hoffman P.F., 1999 : The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. Journal of African Earth Sciences, 28 (1), 17–33. DOI : 10.1016/S0899-5362(99)00018-4. [CrossRef] [Google Scholar]
- Hoffman P.F., Schrag D.P., 2002 : The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14 (3), 129–155. DOI : 10.1046/j.1365-3121.2002.00408.x. [CrossRef] [Google Scholar]
- Howett C.J.A., Spencer J.R., Pearl J., Segura M., 2010 : Thermal inertia and bolometric Bond albedo values for Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus as derived from Cassini/CIRS measurements. Icarus, 206, 573–593. DOI : 10.1016/j.icarus.2009.07.016. [NASA ADS] [CrossRef] [Google Scholar]
- Hu Y., Yang J., 2014 : Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars. PNAS, 111, 629–634. DOI : 10.1073/pnas.1315215111PNAS. [NASA ADS] [CrossRef] [Google Scholar]
- Hunt B.G., 1979 : The effects of past variations of the Earth’s rotation rate on climate. Nature, 281 (5728), 188–191. DOI : 10.1038/281188a0. [CrossRef] [Google Scholar]
- Hunt B.G., 1982 : The impact of large variations of the Earth’s obliquity on the climate. Journal of the Meteorological Society of Japan, 60 (1), 309–318. [CrossRef] [Google Scholar]
- Imamura T., 2008 : Wind on Earth, Wind on Venus. Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), http://www.isas.jaxa.jp/e/forefront/2007/imamura/02.shtml. [Google Scholar]
- Ingersoll A.P., 1969 : The runaway greenhouse: A history of water on Venus. Journal of the Atmospheric Sciences, 26, 1191–1198. DOI : 10.1175/1520-0469(1969)026<1191:TRGAHO>2.0.CO;2. [NASA ADS] [CrossRef] [Google Scholar]
- Jenkins G.S., 2000 : Global climate model high-obliquity solution to the ancient climate puzzles of the faint-young Sun paradox and low-latitude Proterozoic glaciation. Journal of Geophysical Research, 105, 7357–7370. DOI : 10.1029/1999jd901125. [CrossRef] [Google Scholar]
- Jones B.W., Sleep P.N.,, 2010 : Habitability of exoplanetary systems with planets observed in transit. Monthly Notices of the Royal Astronomical Society, 407, 1259–1267. DOI : 10.1111/j.1365-2966.2010.16978.x. [NASA ADS] [CrossRef] [Google Scholar]
- Joshi M.M., Haberle R.M., 2012 : Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone. Astrobiology, 12, 3–8. DOI : 10.1089/ast.2011.0668. [NASA ADS] [CrossRef] [Google Scholar]
- Kaltenegger L., 2010 : Characterizing habitable exomoons. The Astrophysical Journal Letters, 712, L125–L130. DOI : 10.1088/2041-8205/712/2/L125. [CrossRef] [Google Scholar]
- Kane S.R., Gelino D.M., 2012 : The Habitable Zone and extreme planetary orbits. Astrobiology, 12 (10), 940–945. DOI : 10.1089/ast.2011.0798. [CrossRef] [Google Scholar]
- Kasting J.F., 1988 : Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus, 74, 472–494. DOI : 10.1016/0019-1035(88)90116-9. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kasting J.F., Pollack J.B., Ackerman T.P., 1984 : Response of Earth’s atmosphere to increases in solar flux and implications for loss of water from Venus. Icarus, 57 (3), 335–355. DOI : 10.1016/0019-1035(84)90122-2. [NASA ADS] [CrossRef] [Google Scholar]
- Kasting J.F., Whitmire D.P., Reynolds R.T., 1993 : Habitable zones around main sequence stars. Icarus, 101 (1), 108–128. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Kasting J.F., Kopparapu R., Ramirez R.M., Harman C.E., 2014 : Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. Proceedings of the National Academy of Sciences (PNAS), 111 (35), 12641–12646. DOI : 10.1073/pnas.1309107110. [NASA ADS] [CrossRef] [Google Scholar]
- Kirschvink J.L., 1992 : Late Proterozoic low-latitude global glaciation: the Snowball Earth. In: Schopf J.W., Klein C. (eds.), The Proterozoic Biosphere, 51–52. Cambridge : Cambridge University Press. [Google Scholar]
- Kirschvink J.L., Gaidos E.J., Bertani L.E., Beukes N.J., Gutzmer J., Maepa L.N., Steinberger R.E., 2000 : Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. PNAS, 97 (4), 1400–1405. DOI : 10.1073/pnas.97.4.1400. [CrossRef] [Google Scholar]
- Kopp G., Lean J.L., 2011 : A new, lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters, 38, L01706, 7 p. DOI : 10.1029/2010GL045777. [Google Scholar]
- Kopparapu R.K., Ramirez R., Kasting J.F., Eymet V., Robinson T.D., Mahadevan S., Terrien R.C., Domagal-Goldman S., Meadows V., Deshpande R., 2013 : Habitable zones around main-sequence stars: new estimates. The Astrophysical Journal, 765 (2), 131, 16 p. DOI : 10.1088/0004-637X/765/2/131. [CrossRef] [Google Scholar]
- Kopparapu R.K., Wolf E.T., Haqq-Misra J., Yang J., Kasting J.F., Meadows V., Terrien R., Mahadevan S., 2016 : The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. The Astrophysical Journal, 819 (1), 84, 14 p. DOI : 10.3847/0004-637X/819/1/84. [NASA ADS] [CrossRef] [Google Scholar]
- Kuhn W.R., Walker J.C.G., Marshall H.G., 1989 : The effect on earths surface-temperature from variations in rotation rate, continent formation, solar luminosity, and carbon-dioxide. Journal of Geophysical Research-Atmospheres, 94 (D8), 11129–11136. DOI : 10.1029/JD094iD08p11129. [CrossRef] [Google Scholar]
- Lamb H.H., 1972 : Climate: Present, past and future. Vol. 1 Fundamentals and climate now. London : Methuen & Co Ltd, 613 p. [Google Scholar]
- Lamb H.H., 1982 : Climate: present, past and future. Vol. 2 Climatic history and the future. London : Methuen & Co Ltd, 835 p. [Google Scholar]
- Lammer H., Bredehöft J.H., Coustenis A., Khodachenko M.L., Kaltenegger L., Grasset O., Prieur D., Raulin F., Ehrenfreund P., Yamauchi M., Wahlund J.-E., Grießmeier J.-M., Stangl G., Cockell C.S., Kulikov Y.N., Grenfell J.L., Rauer H., 2009 : What makes a planet habitable?. The Astronomy and Astrophysics Review, 17, 181–249. DOI : 10.1007/s00159-009-0019-z. [CrossRef] [Google Scholar]
- Lawrence D.J., Feldman W.C., Goldsten J.O., Maurice S., Peplowski P.N., Anderson B.J., Bazell D., McNutt R.L., Jr Nittler L.R., Prettyman T.H., Rodgers D.J., Solomon S.C., Weider S.Z., 2013 : Evidence for water ice near Mercury’s north pole from MESSENGER Neutron Spectrometer measurements. Science, 339 (6117), 292–296. DOI : 10.1126/science.1229953. [NASA ADS] [CrossRef] [Google Scholar]
- Leconte J., Forget F., Charnay B., Wordsworth R., Pottier A., 2013 : Increased insolation threshold for runaway greenhouse processes on Earth like planets. Nature, 504, 268–271. DOI : 10.1038/nature12827. [NASA ADS] [CrossRef] [Google Scholar]
- Leconte J., Forget F., Lammer H., 2015a : On the (anticipated) diversity of terrestrial planet atmospheres. Experimental Astronomy, 40, 449–467. DOI : 10.1007/s10686-014-9403-4. [NASA ADS] [CrossRef] [Google Scholar]
- Leconte J., Forget F., Charnay B., Wordsworth R., Selsis F., Millour E., 2015b : 3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability and habitability. Astronomy and Astrophysics. DOI : 10.1051/0004-6361/201321042. [Google Scholar]
- Lemmon M.T., Wolff M.J., Smith M.D., Clancy R.T., Banfield D., Landis G.A., Ghosh A., Smith P.H., Spanovich N., Whitney B., Whelley P., Greeley R., Thompson S., Bell J.F., Squyres S.W., 2004 : Atmospheric imaging results from the Mars Exploration Rovers: Spirit and opportunity. Science, 306 (5702), 1753–1756. ISSN 0036-8075, DOI: 10.1126/science.1104474. [CrossRef] [Google Scholar]
- Leovy C.B., 2003 : Mars The devil is in the dust. Nature, 424 (6952), 1008–1009. DOI : 10.1038/4241008a. [CrossRef] [Google Scholar]
- Linsenmeier M., Pascale S., Lucarini V., 2015 : Climate of Earth-like planets with high obliquity and eccentric orbits : implications for habitability conditions. Planetary and Space Science, 105, 43–59. DOI : 10.1016/j.pss.2014.11.003. [NASA ADS] [CrossRef] [Google Scholar]
- Liu J., Schneider T., 2016 : Contrasting responses to orbital precession on Titan and Earth. Geophysical Research Letters, 43, 7774–7780. DOI : 10.1002/2016GL070065. [CrossRef] [Google Scholar]
- Liu Y., Peltier W.R., Yang J., Vettoretti G., 2013 : The initiation of Neoproterozoic “snowball” climates in CCSM3: the influence of paleocontinental configuration. Climate of the Past, 9, 2555–2577. DOI : 10.5194/cp-9-2555-2013. [CrossRef] [Google Scholar]
- Liu Y., Peltier W.R., Yang J., Vettoretti G., Wang Y., 2017 : Strong effects of tropical ice-sheet coverage and thickness on the hard snowball Earth bifurcation point. Climate Dynamics, 48 (11–12), 3459–3474. DOI : 10.1007/s00382-016-3278-1. [CrossRef] [Google Scholar]
- Lockwood J.G., 1974 : World climatology. An environmental approach. London (UK) : Edward Arnold, 330 p. [Google Scholar]
- Longdoz B., Francois L.M., 1997 : The faint young sun paradox: influence of the continental configuration and of the seasonal cycle on the climatic stability. Global and Planetary Change, 14 (3), 97–112. DOI : 10.1016/S0921-8181(96)00006-9. [CrossRef] [Google Scholar]
- Martínez-Alvarado O., Montabone L., Lewis S.R., Moroz I.M., Read P.L., 2009: Transient teleconnection event at the onset of a planet-encircling dust storm on Mars. Annales Geophysicae, 27, 3663–3676. DOI : 10.5194/angeo-27-3663-2009. [CrossRef] [Google Scholar]
- Mayor M., Queloz D., 1995 : A Jupiter-mass companion to a solar-type star. Nature, 378, 355–359. DOI : 10.1038/378355a0. [NASA ADS] [CrossRef] [Google Scholar]
- Mitchell J.L., Pierrehumbert R.T., Frierson D.M.W., Caballero R., 2009 : The impact of methane thermodynamics on seasonal convection and circulation in a model Titan atmosphere. Icarus, 203, 250–264. DOI : 10.1016/j.icarus.2009.03.043. [CrossRef] [Google Scholar]
- Navarra A., Boccaletti G., 2002 : Numerical general circulation experiments of sensitivity to Earth rotation rate. Climate Dynamics, 19, 467–483. DOI : 10.1007/s00382-002-0238-8. [CrossRef] [Google Scholar]
- NASA Exoplanet Archive, 2017 : NASA Exoplanet Science Institute, California Institute of Technology, https://exoplanetarchive.ipac.caltech.edu/index.html. [Google Scholar]
- Newman M.J., Rood R.T., 1977 : Implications of solar evolution for the Earth’s early atmosphere. Science, 198, 1035–1037. DOI : 10.1126/science.198.4321.1035. [CrossRef] [Google Scholar]
- Nimmo F., Pappalardo R.T., 2016 : Ocean worlds in the outer solar system. Journal of Geophysical Research, 121 (8), 1378–1399. DOI : 10.1002/2016JE005081. [Google Scholar]
- Noda S., Ishiwatari M., Nakajima K., Takahashi Y.O., Takehiro S., Onishi M., Hashimoto K., Kuramoto G.L., Hayashi Y.-Y., 2017 : The circulation pattern and day-night heat transport in the atmosphere of a synchronously rotating aquaplanet: Dependence on planetary rotation rate. Icarus, 282, 1–18. DOI : 10.1016/j.icarus.2016.09.004. [CrossRef] [Google Scholar]
- North G.R., 1975 : Theory of energy-balance climate models. Journal of the Atmospheric Sciences, 32, 2033–2043. DOI : 10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2. [CrossRef] [Google Scholar]
- North G.R., Cahalan R.F., Coakley J.A., 1981 : Energy balance climate models. Reviews of Geophysics and Space Physics, 19, 91–121. DOI : 10.1029/RG019i001p0009. [NASA ADS] [CrossRef] [Google Scholar]
- OBSPM/Observatoire de Paris, 2017a : Astronomie et mécanique céleste : paramètres orbitaux. Consulté sur https://media4.obspm.fr/public/AMC/pages_definition-systeme-solaire/bb-parametres-orbitaux.html. [Google Scholar]
- OBSPM/Observatoire de Paris, 2017b : Les atmosphères planétaires. Consulté sur http://media4.obspm.fr/public/AMC/pages_atmospheres-planetaires/impression.html. [Google Scholar]
- Oglesby R.J., Ogg J.G., 1999 : The effect of large fluctuations in obliquity on climates of the late Proterozoic. Paleoclimates, 2, 293–316. [Google Scholar]
- Oke T.R., 1987 : Boundary layer climates. London & New York : Methuen & Co LTD, 372 p. [Google Scholar]
- Pagney P., 1994 : Les climats de la Terre. Paris : Masson, 166 p. [Google Scholar]
- Pelton J.N., Madry S., Camacho-Lara S., 2013 : Handbook of satellite applications. New York : Springer, 1226 p. [Google Scholar]
- Persson A.O., 1998 : How Do We Understand the Coriolis Force?. Bulletin of the American Meteorological Society, 79 (7), 1373–1385. DOI : 10.1175/1520-0477(1998)079<1373:HDWUTC>2.0.CO;2. [CrossRef] [Google Scholar]
- Persson A.O., 2006 : Hadley’s Principle: Understanding and misunderstanding the Trade Winds. History of Meteorology, 3, 17–42. [Google Scholar]
- Pierrehumbert R.T., 2004 : High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature, 429, 646–649. DOI : 10.1038/nature02640. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Pierrehumbert R.T., Abbot D.S., Voigt A., Koll D., 2011 : Climate of the Neoproterozoic. Annual Review of Earth and Planetary Sciences, 39, 417–460. DOI : 10.1146/annurev-earth-040809-152447. [CrossRef] [Google Scholar]
- Porter S.B., Grundy W.M., 2011 : Post-capture evolution of potentially habitable exomoons. The Astrophysical Journal Letters, 736 (L14). DOI: 10.1088/2041-8205/736/1/L14. [Google Scholar]
- Queloz D., Bouchy F., Moutou C., Hatzes A., Hébrard G., Alonso R., Auvergne M., Baglin A., Barbieri M., Barge P., Benz W., Bordé P., Deeg H.J., Deleuil M., Dvorak R., Erikson A., Ferraz Mello S., Fridlund M., Gandolfi D., Gillon M., Guenther E., Guillot T., Jorda L., Hartmann M., Lammer H., Léger A., Llebaria A., Lovis C., Magain P., Mayor M., Mazeh T., Ollivier M., Pätzold M., Pepe F., Rauer H., Rouan D., Schneider J., Segransan D., Udry S., Wuchterl G., 2009 : The CoRoT-7 planetary system: two orbiting super-Earths. Astronomy and Astrophysics, 506, 303–319. DOI : 10.1051/0004-6361/200913096. [Google Scholar]
- Queney P., 1974 : Éléments de météorologie. Paris : Masson et Cie, 300 p. [Google Scholar]
- Ramage C.S., 1971 : Monsoon meteorology. New York : Academic Press, 296 p. [Google Scholar]
- Rasool S.I., Debergh C., 1970 : The runaway greenhouse and the accumulation of CO2 in the Venus atmosphere. Nature, 226, 1037–1039. DOI : 10.1038/2261037a0. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Rey K., Amiot R., Fourel F., Rigaudier T., Abdala F., Day M.O., Fernandez V., Fluteau F., France-Lanord C., Rubidge B.S., Smith R.M., Viglietti P.A., Zipfel B., Lécuyer C., 2016 : Global climate perturbations during the Permo-Triassic mass extinctions recorded by continental tetrapods from South Africa. Gondwana Research, 37, 384–396. DOI : 10.1016/j.gr.2015.09.008. [CrossRef] [Google Scholar]
- Reynolds R.T., McKay C.P., Kasting J.F., 1987 : Europa, tidally heated oceans, and habitable zones around giant planets. Advances in Space Research, 7, 125–132. DOI : 10.1016/0273-1177(87)90364-4. [NASA ADS] [CrossRef] [Google Scholar]
- Richard Y., 1993 : Relations entre la variabilité pluviométrique en Afrique australe tropicale et la circulation océano-atmosphérique. Université de Provence (Aix-Marseille I) : Thèse de Doctorat, 252 p. [Google Scholar]
- Riehl H., 1979 : Climate and weather in the Tropics. London (UK) : Academic Press Inc., 611 p. ISBN: 0-12-588180-0. [Google Scholar]
- Rogers J.H., 2008 : The accelerating circulation of Jupiter’s Great Red Spot. Journal of the British Astronomical Association, 118 (1), 14–20. [Google Scholar]
- Rotaru M., Gaillardet J., Steinberg M., Trichet J., 2006 : Les climats passés de la Terre. Société Géologique de France, Paris, Vuibert, 195 p. [Google Scholar]
- Schneider T., 2006 : The general circulation of the atmosphere. Annual Review of Earth and Planetary Sciences, 34, 655–688. DOI : 10.1146/annurev.earth.34.031405.125144. [CrossRef] [Google Scholar]
- Schneider T., Graves S.D.B., Schaller E.L., Brown M.E., 2012 : Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle. Nature, 481 (7379), 58–61. DOI : 10.1038/nature10666. [CrossRef] [Google Scholar]
- Sellers W.D., 1969 : A climate model based on the energy balance of the Earth-atmosphere system. Journal of Applied Meteorology, 8, 392–400. DOI : 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2. [CrossRef] [Google Scholar]
- Showman A.P., Wordsworth R.D., Merlis T.M., Kaspi Y., 2013 : Atmospheric circulation of terrestrial exoplanets. In: Mackwell S.J., Simon-Miller A.A., Harder J.W., Bullock M.A. (eds.), Comparative Climatology of Terrestrial Planets. Tucson : University of Arizona Press, 277–326. DOI : 10.2458/azu_uapress_9780816530595-ch12. [Google Scholar]
- Smith M.D., Pearl J.C., Conrath B.J., Christensen P.R., 2001 : Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution. Journal of Geophysical Research, 106 (E10), 23929–23945. DOI : 10.1029/2000JE001321. [CrossRef] [Google Scholar]
- Spiegel D.S., Menou K., Scharf C.A., 2008 : Habitable climates. The Astrophysical Journal, 681, 1609–1623. DOI : 10.1086/588089. [NASA ADS] [CrossRef] [Google Scholar]
- Spiegel D.S., Menou K., Scharf C.A., 2009 : Habitable climates: the influence of obliquity. The Astrophysical Journal, 691, 596–610. DOI : 10.1088/0004-637X/691/1/596. [NASA ADS] [CrossRef] [Google Scholar]
- Spiegel D.S., Raymond S.N., Dressing C.D., Scharf C.A., Mitchell J.L., 2010 : Generalized Milankovitch cycles and long-term climatic habitability. The Astrophysical Journal, 721, 1308–1318. DOI : 10.1088/0004-637X/721/2/1308. [NASA ADS] [CrossRef] [Google Scholar]
- Spiga A., Forget F., 2009 : A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results. Journal of Geophysical Research (Planets), 114 (E2), 26 p. DOI : 10.1029/2008JE003242. [Google Scholar]
- Stevenson D.S., 2016 : The Exo-Weather Report. Exploring diverse atmospheric phenomena around the Universe. Astronomers’ Universe, Springer, 452 p. DOI : 10.1007/978-3-319-25679-5. [Google Scholar]
- Stone P.H., 1972 : A simplified radiative-dynamical model for the static stability of rotating atmospheres. Journal of the Atmospheric Sciences, 29, 405–418. DOI : 10.1175/1520-0469(1972)029<0405:ASRDMF>2.0.CO;2. [CrossRef] [Google Scholar]
- Tajika E., 2003: Faint young Sun and the carbon cycle: implication for the Proterozoic global glaciations. Earth and Planetary Science Letters, 214 (3–4), 443–453. DOI : 10.1016/S0012-821X(03)00396-0. [CrossRef] [Google Scholar]
- Tokano T. (2008) Dune-forming winds on Titan and the influence of topography, Icarus 1941, 243–262. doi:10.1016/j.icarus.2007.10.007. [CrossRef] [Google Scholar]
- Tokano T. (2009) Impact of seas/lakes on polar meteorology of Titan : simulation by a coupled GCM-sea model, Icarus 2042, 619–636. doi:10.1016/j.icarus.2009.07.032. [CrossRef] [Google Scholar]
- Underwood D.R., Jones B.W., Sleep P.N., 2003 : The evolution of habitable zones during stellar lifetimes and its implications on the search for extraterrestrial life. International Journal of Astrobiology, 2 (4), 289–299. DOI : 10.1017/S1473550404001715. [NASA ADS] [CrossRef] [Google Scholar]
- Valencia D., Sasselov D.D., Oconnell R.J., 2007 : Radius and structure models of the first super-Earth planet. The Astrophysical Journal, 656 (1), 545–551. DOI : 10.1086/509800. [NASA ADS] [CrossRef] [Google Scholar]
- Verbiscer A., French R., Showalter M., Helfenstein P., 2007 : Enceladus: cosmic graffiti artist caught in the act. Science, 315 (5813), 815. DOI : 10.1126/science.1134681. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Von Paris P., Selsis F., Kitzmann D., Rauer H., 2013 : The dependence of the ice-albedo feedback on atmospheric properties. Astrobiology, 13, 899–909. DOI: 10.1089/ast.2013.0993. [NASA ADS] [CrossRef] [Google Scholar]
- Walker J.C.G., Hays P.B., Kasting J.F., 1981 : A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysical Research, 86 (C10), 9776–9782. DOI : 10.1029/JC086iC10p09776. [NASA ADS] [CrossRef] [Google Scholar]
- Wang B., 2006 : The Asian Monsoon. Berlin : Springer-Verlag, 787 p. [Google Scholar]
- Wang H., Richardson M.I., Wilson R.J., Ingersoll A.P., Toigo A.D., Zurek R.W., 2003 : Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars. Geophysical Research Letters 30 (9), 1488, 41.1-41.4. DOI : 10.1029/2002GL016828. [Google Scholar]
- Way M.J., Del Genio A.D., Kelley M., Aleinov I., Clune T., 2016 : Exploring the Inner Edge of the Habitable Zone with Fully Coupled Oceans. Comparative Climatology of Terrestrial Planets II, NASA Conference Proceeding technical No. TBD. http://www.giss.nasa.gov/projects/astrobio. [Google Scholar]
- Way M.J., Del Genio A.D., Kiang N.Y., Sohl L.E., Grinspoon D.H., Aleinov I., Kelley M., Clune T., 2017 : Was Venus the First Habitable World of our Solar System?. Geophysical Research Letters, à paraître. DOI : 10.1002/2016GL069790. [Google Scholar]
- Whewell W., 1853 : On the Plurality of Worlds. London : J.W. Parker and Son, Chap. X, Section 4. [Google Scholar]
- Whitmire D.P., Reynolds R.T., Kasting J.F., 1991 : Habitable zones for Earth-like planets around main sequence stars. In: Bioastronomy: The Search for Extraterrestrial Life (Heidmann J., Klein M.J. (eds.), Springer-Verlag, Berlin, pp. 173–178. [CrossRef] [Google Scholar]
- Williams G.E., 1975 : Late Precambrian glacial climate and the Earth’s obliquity. Geological Magazine, 112 (5), 441–465. DOI: 10.1017/S0016756800046185. [CrossRef] [Google Scholar]
- Williams D.M., Kasting J.F., Wade R.A., 1997 : Habitable moons around extrasolar planets. Nature, 385, 234–236. DOI: 10.1038/385234a0. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Wolf E.T., Shields A.L., Kopparapu R.K., Haqq-Misra J., Toon O.B., 2017 : Constraints on climate and habitability for Earth-like exoplanets determined from a general circulation model. The Astrophysical Journal, 837 (2). DOI: 10.3847/1538-4357/aa5ffc. [Google Scholar]
- Wordsworth R.D., Forget F., Selsis F., Millour E., Charnay B., Madeleine J.-B., 2011 : Gliese 581d is the first discovered terrestrial-mass exoplanet in the habitable zone. The Astrophysical Journal Letters, 733, L48, 5 p. DOI: 10.1088/2041-8205/733/2/L48. [CrossRef] [Google Scholar]
- Yang J., Abbot D.S., 2014 : A low-order model of water vapor, clouds, and thermal emission for tidally locked terrestrial planets. The Astrophysical Journal, 784, 155, 13 p. DOI: 10.1088/0004-637X/784/2/155. [NASA ADS] [CrossRef] [Google Scholar]
- Yang J., Cowan N.B., Abbot D.S., 2013 : Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. The Astrophysical Journal, 771, L45, 6 p. DOI: 10.1088/2041-8205/771/2/L45. [CrossRef] [Google Scholar]
- Yang J., Boué G., Frabrycky D.C., Abbot D.S., 2014 : Strong dependence of the inner edge of the habitable zone on planetary rotation rate. The Astrophysical Journal Letters 787, L2, 7 p. DOI: 10.1088/2041-8205/787/1/L2. [NASA ADS] [CrossRef] [Google Scholar]
- Yang J., Ding F., Ramirez R.M., Peltier W.R., Hu Y., Liu Y., 2017 : Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse. Nature Geoscience, 10, 556–560. DOI: 10.1038/ngeo2994. [CrossRef] [Google Scholar]
- Zhou J., Lau K.-M., 1998: Does a monsoon climate exist over South America?. Journal of Climate, 11, 1020–1040. DOI: 10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.