Open Access
Issue
Climatologie
Volume 14, 2017
Page(s) 1 - 17
DOI https://doi.org/10.4267/climatologie.1243
Published online 23 January 2018
  • Alexander L.V., Uotila P., Nicholls N., Lynch A., 2010 : A new daily pressure dataset for Australia and its application to the assessment of changes in synoptic patterns during the last century. Journal of Climate, 23, 5, 1111–1126. [CrossRef] [Google Scholar]
  • Amerine M.A., Winkler A.J., 1944 : Composition and quality of musts and wines of California grapes. University of California, 184 p. [Google Scholar]
  • Arlot S., Celisse A., 2010 : A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 0, 40–79. [CrossRef] [Google Scholar]
  • Beltrando G., Chémery L., 1995 : Dictionnaire du climat. Larousse, 331 p. [Google Scholar]
  • Bivand R.S., Pebesma E.J., Gómez-Rubio V., Pebesma E.J., 2008 : Applied spatial data analysis with R. Springer, 2008, 405 p. [Google Scholar]
  • Blouin J., 2007 : Le dictionnaire de la vigne et du vin. Dunod, Paris, 2007, 351 p. [Google Scholar]
  • Bois B., 2007 : Cartographie agroclimatique à méso-echelle : méthodologie et application à la variabilité spatiale du climat en Gironde viticole. Conséquences pour le développement de la vigne et la maturation du raisin. Thèse de doctorat, Université de Bordeaux, 210 p. [Google Scholar]
  • Bois B., Joly D., Pieri P., Gaudillière J.-P., Guyon D., Van Leeuwen C., 2014 : Zonage climatique de l’aire de production des vins de bordeaux basé sur la température. Incidences sur la phénologie de la vigne. In ‘Changement climatique et terroirs viticoles’, Lavoisier Tec&doc, 189–214. [Google Scholar]
  • Bonnardot V., Carey V.A., Madelin M., Cautenet S., Coetzee Z., Quénol H., 2012 : Spatial variability of night temperatures at a fine scale over the Stellenbosch wine district, South Africa. Journal International des Sciences de la Vigne et du Vin, 46, 1, 1–13. [Google Scholar]
  • Bonnefoy C., 2013 : Observation et modélisation spatiale de la température dans les terroirs viticoles du Val de Loire dans le contexte du changement climatique, Thèse de doctorat, Université Rennes 2, 321 p. [Google Scholar]
  • Bonnefoy C., Quenol H., Planchon O., Barbeau G., 2010 : Températures et indices bioclimatiques dans le vignoble du Val de Loire dans un contexte de changement climatique. EchoGéo, 14. Consultable sur http://echogeo.revues.org/12146 [Accédé le 25 août 2014]. [Google Scholar]
  • Carrega P., 2003 : Le climat aux échelles fines. Publications de l’Association internationale de Climatologie, 15, 19–30. [Google Scholar]
  • Cassou C., 2004 : Du changement climatique aux régimes de temps : l’oscillation nord-atlantique. La Météorologie, 45, 21–32. [Google Scholar]
  • Cortes C., Vapnik V., 1995 : Support-vector networks. Machine learning, 20, 3, 273–297. [Google Scholar]
  • Czaja A., Frankignoul C., 1999 : Influence of the North Atlantic SST on the atmospheric circulation. Geophysical Research Letters, 26, 19, 2969–2972. [CrossRef] [Google Scholar]
  • Dunn M., Lindesay J., Howden M., 2015 : Spatial and temporal scales of future climate information for climate change adaptation in viticulture: a case study of user needs in the Australian winegrape sector. Australian Journal of Grape and Wine Research, 21, 2, 226–239. [CrossRef] [Google Scholar]
  • Gladstones J., 2011 : Wine, terroir and climate change. Wakefield Press, 279 p. [Google Scholar]
  • Hall A., Jones G.V., 2009 : Effect of potential atmospheric warming on temperature-based indices describing Australian winegrape growing conditions. Australian Journal of Grape and Wine Research, 15, 2, 97–119. [CrossRef] [Google Scholar]
  • Huglin P., 1978 : Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Comptes Rendus de l’Académie d’Agriculture de France, 64, 1117–1126. [Google Scholar]
  • Hurrell J.W., Kushnir Y., Ottersen G., Visbeck M., 2003 : An overview of the North Atlantic Oscillation. In In J.W. Hurrell, et al. Dir., The North Atlantic Oscillation: Climatic Significance and Environmental Impact. American Geophysical Union, 1–35. Consultable sur http://onlinelibrary.wiley.com/doi/10.1029/134GM01/summary [Accédé le 26 septembre 2017]. [Google Scholar]
  • Joly D., Nilsen L., Fury R., Elvebakk A., Brossard T., 2003 : Temperature interpolation at a large scale: test on a small area in Svalbard. International Journal of Climatology, 23, 13, 1637–1654. [CrossRef] [Google Scholar]
  • Jones G., 2006 : Climate change and wine: observations, impacts and future implications. Wine Industry Journal, 21, 4, 21–26. [Google Scholar]
  • Jones G., Alves F., 2012 : Impact of climate change on wine production: a global overview and regional assessment in the Douro Valley of Portugal. International Journal of Global Warming, 4, 3/4, 383. [CrossRef] [Google Scholar]
  • Katurji M., Noonan B., Zawar-Reza P., Schulmann T., Sturman A., 2015 : Characteristics of the springtime alpine valley atmospheric boundary layer using Self-Organizing Maps. Journal of Applied Meteorology and Climatology, 54, 10, 2077–2085. [CrossRef] [Google Scholar]
  • Kohonen T., 1988 : An introduction to neural computing. Neural networks, 1, 1, 3–16. [CrossRef] [Google Scholar]
  • Kohonen T., 2012 : Self-organization and associative memory. Springer Science & Business Media, vol. 8, 312 p. [Google Scholar]
  • Köppen W., 1936 : Das geographischen system der climate. Handbuch der klimatologie, 1–44. [Google Scholar]
  • Le Roux R., Katurji M., Zawar-Reza P., De Rességuier L., Sturman A., Van Leeuwen C., Parker A., Trought M., Quénol H., 2016 : A fine scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods. In Proceeding of the XIth International Terroir Congress, 10-14 July, Oregon, USA. [Google Scholar]
  • Le Roux R., De Rességuier L., Corpetti T., Jégou N., Madelin M., Van Leeuwen C., Quénol H., 2017 : Comparison of two fine scale spatial models for mapping temperatures inside winegrowing areas. Agricultural and Forest Meteorology, 247, 159–169. [CrossRef] [Google Scholar]
  • Le Roux R., Neethling E., De Resseguier L., Barbeau G., Van Leeuwen C., Quénol H., 2016 : Nested scale approach to characterize climate aspect of vineyard terroirs in a context of climate change. In ‘Climwine Sustainable grape and wine production in the context of climate change’, 10-13 avril, Bordeaux, France. [Google Scholar]
  • Van Leeuwen C., Seguin G., 2006 : The concept of terroir in viticulture. Journal of Wine Research, 17, 1, 1–10. [CrossRef] [Google Scholar]
  • Madelin M., 2004 : L’aléa gélif printanier dans le vignoble marnais en Champagne. Modélisation spatiale à une échelle fine des écoulements de l’air et des températures minimales.. Thèse de doctorat, Université Paris-Diderot - Paris VII, 412 p. [Google Scholar]
  • Martin N., Carrega P., Adnès C., 2013 : Downscaling à fine résolution spatiale des températures actuelles et futures par modélisation statistique des sorties ALADIN-climat sur les Alpes-Maritimes (France). Climatologie, 10, 51–73. [EDP Sciences] [Google Scholar]
  • Mira De Orduña R., 2010 : Climate change associated effects on grape and wine quality and production. Food Research International, 43, 7, 1844–1855. [CrossRef] [Google Scholar]
  • Nigro M.A., Cassano J.J., Seefeldt M.W., 2011 : A weather-pattern-based approach to evaluate the Antarctic Mesoscale Prediction System (AMPS) forecasts: Comparison to automatic weather station observations. Weather and Forecasting, 26, 2, 184–198. [CrossRef] [Google Scholar]
  • Parker A., Garcia De Cortázar-Atauri I., Chuine I., Barbeau G., Bois B., Boursiquot J.-M., Cahurel J.-Y., Claverie M., Dufourcq T., Gény L., Guimberteau G., Hofmann R.W., Jacquet O., Lacombe T., Monamy C., Ojeda H., Panigai L., Payan J.-C., Lovelle B.R., Rouchaud E., Schneider C., Spring J.-L., Storchi P., Tomasi D., Trambouze W., Trought M., Van Leeuwen C., 2013 : Classification of varieties for their timing of flowering and veraison using a modelling approach: A case study for the grapevine species Vitis vinifera L. Agricultural and Forest Meteorology, 180, 249–264. [CrossRef] [Google Scholar]
  • Parker A., Garcia De Cortázar-Atauri I., Van Leeuwen C., Chuine I., 2011 : General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17, 2, 206–216. [CrossRef] [Google Scholar]
  • Quénol H., Bonnefoy C., Bonnardot V., Barbeau G., Neethling E., Madelin M., Roger S., Cautenet S., Le Roux R., 2014 : Méthodes d’analyse et de modélisation agro climatique et de changement climatique à l’échelle des terroirs viticoles. Changement climatique et terroirs viticoles, 39–89. [Google Scholar]
  • Quénol H., De Cortazar Atauri I.G., Bois B., Sturman A., Bonnardot V., Le Roux R., 2017: Which climatic modeling to assess climate change impacts on vineyards?. OENO One, 51, 2, 91–97. [CrossRef] [Google Scholar]
  • Quénol H., Bonnardot V., 2014 : A multi-scale climatic analysis of viticultural terroirs in the context of climate change: the “TERADCLIM” project. Journal International des Sciences de la Vigne et du Vin, Special issue on the Laccave project, 23–32. [Google Scholar]
  • De Rességuier L., Le Roux R., Quénol H., Van Leeuwen C., 2016 : Spatial temperature variability and distribution at local scale in Saint-Emilion and Pomerol. In ‘Climwine Sustainable grape and wine production in the context of climate change’, 10-13 avril, Bordeaux, France. [Google Scholar]
  • Skamarock W., Klemp J., Dudhia J., Gill D., Barker D., Wang W., Huang X.-Y., Duda M., 2008 : A Description of the Advanced Research WRF Version 3, Consultable sur http://dx.doi.org/10.5065/D68S4MVH [Accédé le 4 mai 2016]. [Google Scholar]
  • Soltanzadeh I., Bonnardot V., Sturman A., Quénol H., Zawar-Reza P., 2016 : Assessment of the ARW-WRF model over complex terrain: the case of the Stellenbosch Wine of Origin district of South Africa. Theoretical and Applied Climatology, 129, 3–4, 1407–1427. [CrossRef] [Google Scholar]
  • Stahl K., Moore R.D., Floyer J.A., Asplin M.G., Mckendry I.G., 2006 : Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agricultural and Forest Meteorology, 139, 3–4, 224–236. [CrossRef] [Google Scholar]
  • Sturman A., Schulmann T., Soltanzadeh I., Gendig E., Zawar-Reza P., Katurji M., Parker A., Trought M., 2014 : Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability. In ‘Proceeding of the Xth International Terroir Congress’, 7-10 July, Hungary, 18–23. [Google Scholar]
  • Sturman A., Trought M., Quénol H., Zawar-Reza P., Tait A., Agnew R., Soltanzadeh I., Powell S., Parker A., Katurji M., Gendig E., 2014 : Mesures et modélisation de la variabilité climatique à l’échelle des vignobles de Nouvelle-Zélande. Changement climatique et terroirs viticoles, 267–290. [Google Scholar]
  • Tonietto J., Carbonneau A., 2004 : A multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and Forest Meteorology, 124, 1–2, 81–97. [CrossRef] [Google Scholar]
  • Wackernagel H., 2013 : Multivariate geostatistics: an introduction with applications. Springer Science & Business Media, 293 p. [Google Scholar]
  • Wehrens R., Buydens L.M., 2007 : Self-and super-organizing maps in R: the Kohonen package. Journal of Statistical Software, 21, 5, 1–19. [CrossRef] [Google Scholar]
  • Xu Y., Castel T., Richard Y., Cuccia C., Bois B., 2012 : Burgundy regional climate change and its potential impact on grapevines. Climate dynamics, 39, 7–8, 1613–1626. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.