Numéro
Climatologie
Volume 18, 2021
Changement climatique, territoires et agrosystèmes
Numéro d'article 4
Nombre de pages 19
DOI https://doi.org/10.1051/climat/202118004
Publié en ligne 8 février 2022
  • Abatzoglou J. T., Dobrowski S. Z., Parks S. A., Hegewisch K. C., 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5, 1–12. 10.1038/sdata.2017.191. [CrossRef] [Google Scholar]
  • Aguilera F., Ruiz-Valenzuela L., 2019. A new aerobiological indicator to optimize the prediction of the olive crop yield in intensive farming areas of southern Spain. Agricultural and Forest Meteorology, 271, 207–213. [CrossRef] [Google Scholar]
  • Akaike H., 1974. A new look at the statistical model identification. IEEE transactions on automatic control, 19, 716–723. 10.1109/TAC.1974.1100705. [CrossRef] [Google Scholar]
  • Angles S., 2016. Oléiculture, systèmes oléicoles et territoires méditerranéens : de la filière au paysage. Thèse de Doctorat. Université Paris 13, 165 p. [Google Scholar]
  • Araque Jiménez E., Gallego Simón V. J., Sánchez-Martínez J. D., 2002. El olivar regado en la provincia de Jaén. Investigaciones geográficas. Universidad de Alicante, 28, 5–32. [Google Scholar]
  • Arenas-Castro S., Gonçalves J., Moreno M., Villar R., 2020. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Science of the Total Environment, 709, 136161. [CrossRef] [Google Scholar]
  • Badia-Canes Maquet J., 2018. Modélisation du rendement des oliveraies dans la province de Jaén, Espagne. Mémoire de M1 – Hydrologie, Hydrogéologie, Géochimie environnementale. Sorbonne Université, Laboratoires Métis et Locean, 33 p. [Google Scholar]
  • Baldy C., 1990. Le climat de l’Olivier (Olea europaea L.). Ecologia mediterranea, 16, 113–121. [CrossRef] [Google Scholar]
  • Cabezas J. M., Ruiz-Ramos M., Soriano M. A., Santos C., Gabaldón-Leal C., Lorite I. J., 2021. Impact of climate change on economic components of Mediterranean olive orchards. Agricultural Water Management, 248. [Google Scholar]
  • CCAFS, 2009. Climate change, agriculture and food security: A CGIAR challenge program. Alliance of the CGIAR Centers and ESSPR, ep. 1, 51 pp. [Available online at http://r4d.dfid.gov.uk/PDF/Outputs/CCAFS/ccafs_report_1_lowresolution.pdf]. [Google Scholar]
  • Centre National de l’Information géographique (CNIG), 2021. Climate change, agriculture and food security: A CGIAR challenge program. centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/MapasGenerales/Mapa-fisico-de-Espana_mudo-1-3.000.000.pdf. [Google Scholar]
  • Cohen M., Ronchail J., Alonso-Roldán M., Morcel C., Angles S., Araque-Jiménez E., Labat D., 2014. Adaptability of Mediterranean agricultural systems to climate change. The example of the Sierra Mágina olive-growing region (Andalusia, Spain). Part I: past and present. Weather, Climate, and Society, 6, 380–398, 10.1175/WCAS-D-12-00043.1. [CrossRef] [Google Scholar]
  • Corine Land Cover (CLC), 2021. données d’occupation des sols, land.copernicus.eu/pan-european/corine-land-cover [Google Scholar]
  • Donnelly C., Greuell W., Andersson J., Gerten D., Pisacane G., Roudier P., Ludwig F., 2017. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Chang., 143, 13–26. [CrossRef] [Google Scholar]
  • Fick S. E., Hijmans R. J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37, 4302–4315. doi.org/10.1002/joc [CrossRef] [Google Scholar]
  • Fraga H., Moriondo M., Leolini L., Santos J. A., 2021. Mediterranean olive orchards under climate change: A review of future impacts and adaptation strategies. Agronomy, 11, 56. doi.org/10.3390/agronomy11010056 [Google Scholar]
  • Gabaldón-Leal C., Ruiz-Ramos M., de la Rosa R., León L., Belaj A., Rodríguez A., Santos C., Lorite I. J., 2017. Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain. Int. J. Climatol., 37, 940–957. 10.1002/joc.5048 [CrossRef] [Google Scholar]
  • Galán C., García-Mozo H., Vázquez L., Ruiz L., De La Guardia C. D., Domínguez-Vilches E., 2008. Modeling olive crop yield in Andalusia, Spain. Agronomy Journal, 100, 98–104, 10.2134/agrojnl2006.0345. [CrossRef] [Google Scholar]
  • Garrote L., Iglesias A., Granados A., Mediero L., Martin-Carrasco F., 2015. Quantitative assessment of climate change vulnerability of irrigation demands in Mediterranean Europe. Water Res. Manag., 29, 325–338. [CrossRef] [Google Scholar]
  • GeoPortal du MAPAMA (Ministère de l’Agriculture, de la Pêche et de l’Alimentation), 2021. Mapas de Cultivos y Aprovechamientos: Mapa de Cultivos 1980–1990 y Mapa de Cultivos 2000–2010. sig.mapama.gob.es/geoportal/. [Google Scholar]
  • Harris I., Osborn T. J., Jones P., Lister D., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 109. doi.org/10.1038/s41597-020-0453-3. [CrossRef] [Google Scholar]
  • Heltberg R., Bennett-Siegel P., Lau-Jorgensen S., 2009. Addressing human vulnerability to climate change: Toward a ‘no regrets’ approach. Global Environ. Change, 19, 89–99, 10.1016/j.gloenvcha.2008.11.003. [CrossRef] [Google Scholar]
  • Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 1965–1978. doi.org/10.1002/joc.1276. [CrossRef] [Google Scholar]
  • IPCC Intergovernmental Panel on Climate Change, 2014. Climate Change 2013: The Physical Science Basis. In Stocker T. F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V. and Midgley P. M. (Eds). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge; New York, NY:Cambridge University Press. 1535 pp. [Google Scholar]
  • Jiménez E. A., Gallego Simón V. J., Sánchez-Martínez J. D., 2002. El Olivar Regado en la provincia de Jaén. Instituto Universitario de Geografía Universidad De Alicante, Investigaciones Geográfica, 28, 5–32. [Google Scholar]
  • Kobayashi S., Ota Y., Charada Y., Ebita A., Moriya M., Onoda H., Onogi K., Kamahori H., Kobayashi C., Endo H., Miyaoka K., Takahashi K., 2015. The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn, Ser II 93, 5–48, doi.org/10.2151/jmsj.2015. [CrossRef] [Google Scholar]
  • Lionello P., Scarascia L., 2018. The relation between climate change in the Mediterranean region and global warming. Regional Environmental Change, 18, 1481–1493 doi.org/10.1007/s10113-018-1290-1. [CrossRef] [Google Scholar]
  • Lorenzo-Lacruz J., Morán-Tejeda E., Vicente-Serrano S. M., López-Moreno J. I., 2013. Streamflow droughts in the Iberian Peninsula between 1945 and 2005: spatial and temporal patterns. Hydrology and Earth System Sciences, 17, 119–134. [CrossRef] [Google Scholar]
  • MedECC, 2020. Résumé à l’intention des décideurs. Dans : Changement climatique et environnemental dans le bassin méditerranéen – Situation actuelle et risques pour le futur. Premier rapport d’évaluation sur la Méditerranée [Cramer W., Guiot J., Marini K. (eds.)]Union pour la Méditerranée, Plan Bleu, UNEP/MAP, Marseille, France, 35 pp. [Google Scholar]
  • Ministère de l’Agriculture, de la Pêche et de l’Alimentation (MAPA), 2021a. www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/aceite.aspx. [Google Scholar]
  • Ministère de l’Agriculture des Pêches et de l’Alimentation (MAPA), 2021b. Données de rendements, www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/ [Google Scholar]
  • Moriondo M., Ferrise R., Trombi G., Lorenzo B., Dibari C., Bindi M., 2015. Modelling olive trees and grapevines in a changing climate. Environmental Modelling & Software, dx.doi.org/10.1016/j.envsoft.2014.12.016. [Google Scholar]
  • Mosier T. M., Hill D. F., Sharp K. V., 2014. 30-Arcsecond monthly climate surfaces with global land coverage. Int. J. Climatol., 34, 2175–2188. doi.org/10.1002/joc.3829. [CrossRef] [Google Scholar]
  • O’Brien G., Devisscher T., O’Keefe P., Tellam I., 2011. The adaptation continuum: Groundwork for the future. Lambert Academic Publishing, 364 pp. [Google Scholar]
  • Oficina Comarcal Agraria (OCA), 2001. Caracterización del territorio de la OCA. Junta de Andalucia, Consejeria de Agricultura Pesca y Desarrollo Sostenible. www.juntadeandalucia.es/organismos/agriculturaganaderiapescaydesarrollosostenible/servicios/estadistica-cartografia/estudios-informes/detalle/95149.html. [Google Scholar]
  • Orlandi F., Vazquez L. M., Ruga L., Bonofiglio T., Fornaciari M., Garcia-Mozo H., Domínguez E., Romano B., Galan C., 2005. Bioclimatic Requirements for olive flowering in two Mediterranean regions located at the same latitude (Andalucía, Spain and Sicily, Italy). Ann. Agric. Environ. Med., 12, 47–52. [Google Scholar]
  • Orlandi F., Avolio E., Bonofiglio T., Federico S., Romano B., Fornaciari M., 2013. Potential shifts in olive flowering according to climate variations in Southern Italy. Meteorological Applications, 20, 497–503. dx.doi.org/10.1002/met.1318. [CrossRef] [Google Scholar]
  • Orlandi F., Rojo J., Picornell A., Oteros J., Pérez-Badia R., Fornaciari M., 2020. Impact of climate change on olive crop production in Italy. Atmosphere, 11, 595. 10.3390/atmos11060595 [CrossRef] [Google Scholar]
  • Ponti L., Gutierrez A. P., Ruti P. M., Dell’Aquila A., 2014. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proceedings of the National Academy of Sciences USA, 111, 5598–5603. [CrossRef] [Google Scholar]
  • Programme des Nations Unies pour l’Environnement/Plan d’Action pour la Méditerranée PNUE/PAM et Plan Bleu, 2020. État de l’Environnement et du Développement en Méditerranée. Nairobi, planbleu.org/wp-content/uploads/2021/04/RED-2020-Rapport-complet.pdf [Google Scholar]
  • Quénol H., Bonnardot V.. 2014, A multi-scale climatic analysis of viticultural terroirs in the context of climate change: the “TERADCLIM” project. International Journal of Vine and Wine Sciences, 23–32. [Google Scholar]
  • Quiroga S., Iglesias A., 2009. A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain. Agricultural Systems, 101, 91–100. dx.doi.org/10.1016/j.agsy.2009.03.006. [CrossRef] [Google Scholar]
  • Ranasinghe R., Ruane A. C., Vautard R., Arnell N., Coppola E., Cruz F. A., Dessai S., Islam A. S., Rahimi M., Ruiz Carrascal D., Sillmann J., Sylla M. B., Tebaldi C., Wang W., Zaaboul R., 2021. Climate Change Information for Regional Impact and for Risk Assessment. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V., Zhai P., Pirani A., Connors S. L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M. I., Huang M., Leitzell K., Lonnoy E., Matthews J. B. R., Maycock T. K., Waterfield T., Yelekçi O., Yu R., Zhou B. (eds)] Cambridge University Press. In Press. [Google Scholar]
  • Rodrigo-Comino J., Senciales-González J. M., Yu Y., Salvati L., Giménez-Morera A., Cerdà A., 2021. Long-term changes in rainfed olive production, rainfall and farmer’s income in Bailén (Jaén, Spain). Euro-Mediterranean Journal for Environmental Integration, 6, 1–15, doi.org/10.1007/s41207-021-00268-1. [CrossRef] [Google Scholar]
  • Rodríguez-Cohard J. C., Sánchez-Martínez J. D., Gallego-Simón V. J., 2017. The upgrading strategy of olive oil producers in Southern Spain: origin, development and constraints. Rural Society, 26, 30–47, 10.1080/10371656.2017.1285470. [CrossRef] [Google Scholar]
  • Ronchail J., Cohen M., Alonso-Roldan M., Garcin H., Angles S., Sultan B., 2014. Adaptability of Mediterranean agro systems to climate change, 2014. The example of the Sierra Mágina olive growing region (Andalusia, Spain). II The future. Weather, Climate and Society, 6, 451–467. 10.1175/WCAS-D-12-00045.1 [CrossRef] [Google Scholar]
  • Sánchez-Martínez J. D., Paniza-Cabrera A., 2015. The olive monoculture in the south of Spain. European Journal of Geography, 6, 16–29. [Google Scholar]
  • Sánchez-Martínez J. D., Garrido-Almonacid A. G., 2017. Productivism and post-productivism in the olive groves of southern Spain. Quaestiones Geographicae, 36, 57–69. [CrossRef] [Google Scholar]
  • Sánchez-Martínez J. D., Rodríguez-Cohard J. C., Garrido-Almonacid A., Gallego-Simón V. J., 2020. Social innovation in rural areas? The case of Andalusian olive oil co-operatives. Sustainability, 12, 10019, 10.3390/su122310019. [Google Scholar]
  • Sofo A., Manfreda S., Fiorentino M., Dichio B., Xiloyannis C., 2008. The olive tree: a paradigm for drought tolerance in Mediterranean climates. Hydrology and Earth System Sciences, 12, 293–301. [CrossRef] [Google Scholar]
  • Tanasijevic L., Todorovic M., Pereira L. S., Pizzigalli C., Lionello P., 2014. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agricultural Water Management, 144, 54–68. [CrossRef] [Google Scholar]
  • Tissot C., Quenol H., Rouan M., 2020. Adaptation de la viticulture argentine à la variabilité climatique : une approche par simulation dans la région de Mendoza. Norois, 254, 91–108. [CrossRef] [Google Scholar]
  • van Leeuwen C., Destrac-Irvine A., Dubernet M., Duchêne E., Gowdy M., Marguerit E., Pieri P., Parker A., de Rességuier L., Ollat N., 2019. An update on the impact of climate change in viticulture and potential adaptations. Agronomy, 9, 514–1. 10.3390/agronomy9090514. [CrossRef] [Google Scholar]
  • World Bank, 2010. WDR, 2010: Development and Climate Change. World Bank, 417 pp. [Available online at http://wdronline.worldbank.org/worldbank/a/c.html/world_development_report_2010/abstract/WB.978-0-8213-7987-5.abstract.] [Google Scholar]
  • Willmott C. J., Robeson S. M., 1995. Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol., 15, 221–229. doi.org/10.1002/joc.3370150207 [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.