Open Access
Issue |
Climatologie
Volume 22, 2024
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/climat/202422005 | |
Published online | 29 January 2025 |
- Alexandre L., 2013. Improving leaf wetness duration modeling with simple physics: applications to apple scab. 75, New England, NY, Canada Fruit Pest Management Workshop, Burlington, VT, United States, 333 p. [Google Scholar]
- Amar C., Petit M., 2004. Pathologies de plantes ornementales tropicales. Petit-Bourg : CIRAD-FLHOR, 49 p. [Google Scholar]
- Banito A., Kpemoua E. K., Dayiwo R. K., Tedihou E., Sikirou R., 2022. Inventaire des maladies de l’anacardier (Anacardium occidentale L.) dans la préfecture de Tchamba au Togo. International Journal of Biological and Chemical Sciences, 15(6), 2514–2525. [CrossRef] [Google Scholar]
- Brewer C. A., Smith W. K., 1997. Patterns of leaf surface wetness for montane and subalpine plants. Plant, Cell and Environment, 20, 1–11. [CrossRef] [Google Scholar]
- Camargo A. P., Sentelhas P. C., 1997. Performance evaluation of different potential evapotranspiration estimating methods in the State of Sao Paulo. Brazil. Rev. Bras. Agrometeorol., 5, 89–97. [Google Scholar]
- Carisse O., Levasseur A., Provost C., 2020. Influence of leaf wetness duration and temperature on infection of grape leaves by Elsinoe ampelina under controlled and vineyard conditions. Plant Disease, 104(11), 2817–2822. [CrossRef] [Google Scholar]
- Dalla Marta, A., Magarey, R., Orlandini, S., 2005a. Modelling leaf wetness duration and downy mildew simulation on grapevine in Italy. Agric. Forest Meteorol., 132, 84–95. [CrossRef] [Google Scholar]
- Dalla Marta A., De Vincenzi M., Dietrich S., Orlandini S., 2005b. Neural network for the estimation of leaf wetness duration: application to a Plasmopara viticola infection forecasting. Phys. Chem. Earth, 30, 91–96. [CrossRef] [Google Scholar]
- Djaha A. J. B., N’da H. A., Koffi K. E., Adopo N. A., Ake S., 2014. Diversité morphologique des accessions d’anacardier (anacardium occidentale l.) introduits en côte d’ivoire. Rev. Ivoir. Sci. Technol., 244–258. [Google Scholar]
- Gillespie T.J., Srivastava B., Pitblado R.E., 1993. Using operational weather data to schedule fungicide sprays on tomatoes in Southern Ontario. Can. J. Appl. Meteorol., 32, 567–573. [CrossRef] [Google Scholar]
- Harahagazwe D., Ndayiragije P., Ntimpirangeza M., 2007. Les maladies et ravageurs de quelques cultures a racines et tubercules. Séminaire de formation à l’intention des Conseillers pédagogiques de l’atelier Agri-Elevage du Bureau d’Etudes de l’Enseignement Technique (BEET), Bujumbura, Burundi, 94 pages. [Google Scholar]
- Huber L., Gillespie T. J., 1992. Modeling leaf wetness in relation to plant disease epidemiology. Annual Review of Phytopathology, 30(1), 553–577. [CrossRef] [Google Scholar]
- Klemm O., Milford C., Sutton M. A., Spindler G., van Putten E., 2002. A climatology of leaf surface wetness. Theor. Appl. Climatol., 71, 107–117 [CrossRef] [Google Scholar]
- Luo W.H., Goudriaan J., 2000. Dew formation on rice under varying durations of nocturnal radiative loss. Agric. Forest Meteorol., 104, 303–313. [CrossRef] [Google Scholar]
- Madeira A. C., Kim K. S., Taylor S. E., Gleason M. L., 2002. A simple cloud-based energy balance model to estimate dew. Agric. Forest Meteorol., 111, 55–63. [CrossRef] [Google Scholar]
- Monteith J. L., 1957. Dew. Quarterly Journal of the Royal Meteorological Society, 83, 322–341. [CrossRef] [Google Scholar]
- Montone V. O., Fraisse C.W., Peres N. A., Sentelhas P. C., Gleason M., Ellis M. et al., 2016. Evaluation of leaf wetness duration models for operational use in strawberry disease-warning systems in four US states. International Journal of Biometeorology, 60(11), 1761–1774. [CrossRef] [Google Scholar]
- Nguyen B. H., Gilbert G. S., Rolandi M., 2023. A Bio-mimetic leaf wetness sensor from Replica Molding of leaves. Adv. Sensor Res., 2, 2200033. [CrossRef] [Google Scholar]
- Park J., Shin J. Y., Kim K. R., Ha J. C., 2019. Leaf wetness duration models using advanced machine learning algorithms: Application to farms in Gyeonggi Province, South Korea. Water, 11(9), 1878. [CrossRef] [Google Scholar]
- Patel A. M., Lee W. S., Peres N. A., 2022. Imaging and deep learning based approach to leaf wetness detection in strawberry. Sensors, 22(21), 8558. [CrossRef] [Google Scholar]
- Rao P.S., Gillespie T.J., Schaafsma A.W., 1998. Estimating wetness on maize ears from meteorological observations. Can. J. Soil Sci., 78, 149–154. [CrossRef] [Google Scholar]
- Rowlandson T., 2011. Leaf wetness: implications for agriculture and remote sensing. Ph.D. dissertation. Ames: Iowa State University. [Google Scholar]
- Rowlandson T., Gleason M., Sentelhas P., Gillespie T., Thomas C., Hornbuckle B., 2015. Reconsidering leaf wetness duration determination for plant disease management. Plant Disease, 99(3), 310–319. [CrossRef] [Google Scholar]
- Rowlandson T., Gleason M., Sentelhas P. C., Gillespie T., Thomas C., Hornbuckle B., 2015. Reconsidering leaf wetness duration determination for plant disease management. Plant Disease, 99, 310–319. [CrossRef] [Google Scholar]
- Schmitz H. F., Grant R. H., 2009. Precipitation and dew in a soybean canopy: Spatial variations in leaf wetness and implications for Phakopsora pachyrhizi infection. Agricultural and Forest Meteorology, 149(10), 1621–1627. [CrossRef] [Google Scholar]
- Sentelhas P. C., Gillespie T. J., Santos E. A., 2007. Leaf wetness duration measurement: Comparison of cylindrical and flat plate sensors under different field conditions. International Journal of Biometeorology, 51(4), 265–273. [CrossRef] [Google Scholar]
- Sentelhas P. C., Gillespie T. J., Monteiro J. E. B. A., Rowlandson T., 2004. Estimating leaf wetness duration on a cotton crop from meteorological data. Rev. Bras. Agrometeorol., 12, 235–245. [Google Scholar]
- Shin J. Y., Kim B. Y., Park J., Kim K. R., Cha J. W., 2020. Prediction of leaf wetness duration using geostationary satellite observations and machine learning algorithms. Remote Sensing, 12(18), 3076. [CrossRef] [Google Scholar]
- Shin J. Y., Park J., Kim K. R., 2021. Emulators of a physical model for estimating leaf wetness duration. Agronomy, 11(2), 216. [CrossRef] [Google Scholar]
- Solís M., Rojas-Herrera V., 2021. Approaches for the prediction of leaf wetness duration with machine learning. Biomimetics, 6(2), 29. [CrossRef] [Google Scholar]
- Wang H., Sanchez-Molina J. A., Li M., Díaz F. R., 2019. Improving the performance of vegetable leaf wetness duration models in greenhouses using decision tree learning. Water, 11(1), 158. [CrossRef] [Google Scholar]
- Weiss A., 1990. Leaf wetness: measurements and models. Remote Sensing Reviews, 5, 215–224. [CrossRef] [Google Scholar]
- Wilks D. S., 1995. Statistical methods in atmospheric sciences. Academic Press, San Diego, CA. [Google Scholar]
- Zia-Khan S., Kleb M., Merkt N., Schock S., Müller J., 2022. Application of infrared imaging for early detection of downy mildew (Plasmopara viticola) in grapevine. Agriculture, 12(5), 617. [CrossRef] [Google Scholar]
- Zito S., Castel T., Richard Y., Rega M., Bois B., 2020. Optimization of a leaf wetness duration model. Agricultural and Forest Meteorology, 291, 108087. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.