Open Access
Issue |
Climatologie
Volume 22, 2024
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/climat/202422003 | |
Published online | 29 January 2025 |
- AMMA-CATCH, 1990. A hydrological, meteorological and ecological observatory on West Africa. IRD/CNRS-INSU/OSUG/OMP/OREME, doi.org/10.17178/AMMA-CATCH.ALL [Google Scholar]
- Ballaré C. L. et Pierik R., 2017. The shade avoidance syndrome: Multiple signals and ecological consequences. Plant, Cell & Environment, 40 (11), 2530–2543. https://doi.org/10.1111/pce.12914 [CrossRef] [Google Scholar]
- Berg A., Lintner B., Findell K., Giannini A., 2017. Soil moisture influence on seasonality and large-scale circulation in simulations of the West African monsoon. Journal of Climate, 30 (7), 2295–2317. https://doi.org/10.1175/JCLI-D-15-0877.1 [CrossRef] [Google Scholar]
- Borchert R., Rivera G., Hagnauer W., 2002. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica, 34 (1), 27–39. https://doi.org/10.1111/j.1744-7429.2002.tb00239.x [Google Scholar]
- Cappelaere B., Boulain N., Ramier D., Timouk F., Boubkraoui S., Lloyd C., Descroix L., 2007. Un protocole expérimental pour l’étude du couplage entre hydrologie et végétation en région centrale-sahélienne. Rapport technique, 9 pages. https://hal.science/halsde-00186914v1 [Google Scholar]
- Chagnaud G., Gallée H., Lebel T., Panthou G., Vischel T., 2020. A boundary forcing sensitivity analysis of the West African monsoon simulated by the Modèle Atmosphérique Régional. Atmosphere, 11 (2), 191. https://doi.org/10.3390/atmos11020191 [CrossRef] [Google Scholar]
- Chuine I., Yiou P., Viovy N., Seguin B., Daux V., Ladurie E. L. R., 2004. Grape ripening as a past climate indicator. Nature, 432 (7015), 289–290. https://doi.org/10.1038/432289a [CrossRef] [PubMed] [Google Scholar]
- Clapp R. B. et Hornberger G. M., 1978. Empirical equations for some soil hydraulic properties. Water Resources Research, 14 (4), 601–604. https://doi.org/10.1029/WR014i004p00601 [CrossRef] [Google Scholar]
- Copernicus Climate Change Service, 2019. ERA5 monthly averaged data on single levels from 1979 to present [jeu de données]. ECMWF. https://doi.org/10.24381/CDS.F17050D7 [Google Scholar]
- Dai A., 2013. Increasing drought under global warming in observations and models. Nature Climate Change, 3 (1), 52–58. https://doi.org/10.1038/nclimate1633 [CrossRef] [Google Scholar]
- De Condappa D., Galle S., Dewandel B., Haverkamp R., 2008. Bimodal zone of the soil textural triangle: Common in tropical and subtropical regions. Soil Science Society of America Journal, 72 (1), 33–40. https://doi.org/10.2136/sssaj2006.0343 [CrossRef] [Google Scholar]
- De Longueville F., Ozer P., Gemenne F., Henry S., Mertz O., Nielsen J. Ø., 2020. Comparing climate change perceptions and meteorological data in rural West Africa to improve the understanding of household decisions to migrate. Climatic Change, 160 (1), 123–141. https://doi.org/10.1007/s10584-020-02704-7 [CrossRef] [Google Scholar]
- De Ridder K. et Gallée H., 1998. Land surface–induced regional climate change in Southern Israel. Journal of Applied Meteorology, 37 (11), 1470–1485. https://doi.org/10.1175/1520-0450(1998)037<1470:LSIRCC>2.0.CO;2 [CrossRef] [Google Scholar]
- De Ridder K. et Schayes G., 1997. Radiative transfer in the IAGL land surface model. Journal of Applied Meteor., 36 (1), 12–21. https://doi.org/10.1175/1520-0450(1997)036<0012:RTITIL>2.0.CO;2 [CrossRef] [Google Scholar]
- Defrance D., Ramstein G., Charbit S., Vrac M., Famien A. M., Sultan B., Swingedouw D., Dumas C., Gemenne F., Alvarez-Solas J., anderlinden J.-P., 2017. Consequences of rapid ice sheet melting on the Sahelian population vulnerability. Proceedings of the National Academy of Sciences, 114 (25), 6533–6538. https://doi.org/10.1073/pnas.1619358114 [CrossRef] [Google Scholar]
- Dibi-Anoh P. A., Koné M., Gerdener H., Kusche J., N’Da C. K., 2023. Hydrometeorological extreme events in West Africa: Droughts. Surveys in Geophysics, 44(1), 173–195. https://doi.org/10.1007/s10712-022-09748-7 [CrossRef] [Google Scholar]
- Dickinson R. E., 1983. Land surface processes and climate - Surface albedos and energy balance. Advances in Geophysics, 25, 305–353. https://doi.org/10.1016/S0065-2687(08)60176-4 [CrossRef] [Google Scholar]
- Faure P. et Volkoff B., 1998. Some factors affecting regional differentiation of the soils in the Republic of Benin (West Africa). CATENA, 32 (3-4), 281–306. https://doi.org/10.1016/S0341-8162(98)00038-1 [CrossRef] [Google Scholar]
- Galle S., Grippa M., Peugeot C., Moussa I. B., Cappelaere B., Demarty J., Mougin E., Panthou G., Adjomayi P., Agbossou E. K., Ba A., Boucher M., Cohard J.-M., Descloitres M., Descroix L., Diawara M., Dossou M., Favreau G., Gangneron F., Wilcox C., 2018. AMMA-CATCH, a critical zone observatory in West Africa monitoring a region in transition. Vadose Zone Journal, 17 (1), 1–24. https://doi.org/10.2136/vzj2018.03.0062 [CrossRef] [Google Scholar]
- Gallée H. et Schayes G., 1994. Development of a three-dimensional meso-γ primitive equation model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Monthly Weather Review, 122 (4), 671–685. https://doi.org/10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2 [CrossRef] [Google Scholar]
- Gemenne F., Blocher J. M. D., De Longueville F., Vigil Diaz Telenti S., Zickgraf C., Gharbaoui D., Ozer P., 2017. Changement climatique, catastrophes naturelles et déplacements de populations en Afrique de l’Ouest. Géo-Eco-Trop : Revue Internationale de Géologie, de Géographie et d’Écologie Tropicales, 41 (3). https://hdl.handle.net/2268/218730 [Google Scholar]
- GIEC, 2019. Le rapport spécial du GIEC sur le changement climatique et les terres émergées : Quel impacts pour l’Afrique. CDKN, 40 pages. [Google Scholar]
- Haworth M., Elliott-Kingston C., McElwain J. C., 2013. Co-ordination of physiological and morphological responses of stomata to elevated CO² in vascular plants. Oecologia, 171 (1), 71–82. https://doi.org/10.1007/s00442-012-2406-9 [CrossRef] [Google Scholar]
- Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., Thépaut J., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999–2049. https://doi.org/10.1002/qj.3803 [CrossRef] [Google Scholar]
- Klein C., Bliefernicht J., Heinzeller D., Gessner U., Klein I., Kunstmann H., 2017. Feedback of observed interannual vegetation change: A regional climate model analysis for the West African monsoon. Climate Dynamics, 48 (9-10), 2837–2858. https://doi.org/10.1007/s00382-016-3237-x [CrossRef] [Google Scholar]
- Kouman K. D., Kabo-bah A. T., Kouadio B. H., Akpoti K., 2022. Spatio-temporal trends of precipitation and temperature extremes across the North-East Region of Côte d’Ivoire over the period 1981–2020. Climate, 10 (5), 74. https://doi.org/10.3390/cli10050074 [CrossRef] [Google Scholar]
- Lelay M. et Galle S., 2005. How changing rainfall regimes may affect the water balance: A modelling approach in West Africa. Regional Hydrological Impacts of Climatic Change – Hydroclimatic Variability, AISH Publication, 296, 203–210. [Google Scholar]
- Mamadou O., Cohard J.-M., Galle S., Awanou C. N., Diedhiou A., Kounouhewa B., Peugeot C., 2014a. Energy fluxes and surface characteristics over a cultivated area in Benin: Daily and seasonal dynamics. Hydrology and Earth System Sciences, 18 (3), 893–914. https://doi.org/10.5194/hess-18-893-2014 [CrossRef] [Google Scholar]
- Monerie P.-A., Pohl B., Gaetani M., 2021. The fast response of Sahel precipitation to climate change allows effective mitigation action. Npj Climate and Atmospheric Science, 4 (1), 24. https://doi.org/10.1038/s41612-021-00179-6 [CrossRef] [Google Scholar]
- Moussa B. M. C., Mohamadou T. B., Halima O. D., Abdourahamane B., 2022. Risques climatiques et sécurité alimentaire et nutritionnelle au Niger : Cartographie des impacts et des besoins de résilience. VertigO, 22 (1). https://doi.org/10.4000/vertigo.35040 [Google Scholar]
- Muma M., Gumiere S. J., Rousseau A. N., 2014. Analyse de sensibilité globale du modèle CATHY aux propriétés hydrodynamiques du sol d’un micro-bassin agricole drainé. Hydrological Sciences Journal, 59 (8), 1606–1623. https://doi.org/10.1080/02626667.2013.843778 [CrossRef] [Google Scholar]
- Nash J. E. et Sutcliffe J. V., 1970. River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology, 10 (3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6 [CrossRef] [Google Scholar]
- Ouorou Yerima L. G., Hounto G., Yolou I., Yabi I., Afouda F., 2020. Variabilité climatique et production agricole dans la zone agro-écologique III au Nord du Bénin. Afrique Science, 16 (2), 76–85. [Google Scholar]
- Pau S., Wolkovich E. M., Cook B. I., Davies T. J., Kraft N. J. B., Bolmgren K., Betancourt J. L., Cleland E. E., 2011. Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology, 17 (12), 3633–3643. https://doi.org/10.1111/j.1365-2486.2011.02515.x [CrossRef] [Google Scholar]
- Peugeot C., Cappelaere B., Vieux B. E., Séguis L., Maia A., 2003. Hydrologic process simulation of a semiarid, endoreic catchment in Sahelian West Niger – Model-aided data analysis and screening. Journal of Hydrology, 279 (1-4), 224–243. https://doi.org/10.1016/S0022-1694(03)00181-1 [CrossRef] [Google Scholar]
- Piao S., Liu Q., Chen A., Janssens I. A., Fu Y., Dai J., Liu L., Lian X., Shen M., Zhu X., 2019. Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 25 (6), 1922–1940. https://doi.org/10.1111/gcb.14619 [CrossRef] [Google Scholar]
- Richardson A. D., Keenan T. F., Migliavacca M., Ryu Y., Sonnentag O., Toomey M., 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012 [CrossRef] [Google Scholar]
- Ridder K. D. et Schayes G., 1997. The IAGL land surface model. Journal of Applied Meteorology, 36 (2), 167–182. https://doi.org/10.1175/1520-0450(1997)036<0167:TILSM>2.0.CO;2 [CrossRef] [Google Scholar]
- Ringard J., Dieppois B., Rome S., Diedhiou A., Pellarin T., Konaré A., Diawara A., Konaté D., Dje B. K., Katiellou G. L., Seidou Sanda I., Hassane B., Vischel T., Garuma G. F., Mengistu G., Camara M., Diongue A., Gaye A. T., Descroix L., 2016. The intensification of thermal extremes in west Africa. Global and Planetary Change, 139, 66–77. https://doi.org/10.1016/j.gloplacha.2015.12.009 [CrossRef] [Google Scholar]
- Richard A., 2014. Analyse du cycle hydrologique en climat soudanien au Bénin : Vers une modélisation couplée des processus latéraux et verticaux. Interfaces continentales, environnement. Thèse de doctorat de l’Université Grenoble Alpes, 256 pages. [Google Scholar]
- Romanowicz A. A., Vanclooster M., Rounsevell M., La Junesse I., 2005. Sensitivity of the SWAT model to the soil and land use data parametrisation: A case study in the Thyle catchment, Belgium. Ecological Modelling, 187 (1), 27–39. https://doi.org/10.1016/j.ecolmodel.2005.01.025 [CrossRef] [Google Scholar]
- Rome S., Pohl B., Oueslati B., Moron V., Raymond F., Janicot S., Diedhiou A., 2019. Durée et fréquence des vagues de chaleur en Afrique tropicale septentrionale selon 5 indices de chaleur. In ‘Le changement climatique, la variabilité et les risques climatiques’, Tolika K. et Maheras P. Eds, mai 2019, Thessalonique, Grèce, 32, 1–11. [Google Scholar]
- Sarr A. B. et Camara M., 2017. Evolution des indices pluviométriques extrêmes par l’analyse de modèles climatiques régionaux du programme CORDEX : les projections climatiques sur le Sénégal. European Scientific Journal, ESJ, 13 (17), 206. https://doi.org/10.19044/esj.2017.v13n17p206 [CrossRef] [Google Scholar]
- Sebo Vifan E. L. S., Sindjaloum S., Houssou H. J. B., Sognon D. P., Abdoulaye R., 2022. Perceptions et adaptations des exploitants agricoles à la variabilité pluviométrique dans la Commune de Ouaké, Nord-Ouest Bénin. Afrique Science, 20 (5), 131–147. [Google Scholar]
- Smith B., Samuelsson P., Wramneby A., Rummukainen M., 2011. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications. Tellus A: Dynamic Meteorology and Oceanography, 63 (1), 87. https://doi.org/10.1111/j.1600-0870.2010.00477.x [CrossRef] [Google Scholar]
- Strengers B. J., Müller C., Schaeffer M., Haarsma R. J., Severijns C., Gerten D., Schaphoff S., Van Den Houdt R., Oostenrijk R., 2010. Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation–climate model. International Journal of Climatology, 30 (13), 2055–2065. https://doi.org/10.1002/joc.2132 [CrossRef] [Google Scholar]
- Talib J., Taylor C. M., Klein C., Harris B. L., Anderson S. R., Semeena V. S., 2022. The sensitivity of the West African monsoon circulation to intraseasonal soil moisture feedbacks. Quarterly Journal of the Royal Meteorological Society, 148 (745), 1709–1730. https://doi.org/10.1002/qj.4274 [CrossRef] [Google Scholar]
- Vischel T., 2006. Impact de la variabilité pluviométrique de méso-échelle sur la réponse des systèmes hydrologiques sahéliens : Modélisation, simulation et désagrégation. Thèse de doctorat, Université Joseph Fourier / Institut National Polytechnique de Grenoble. [Google Scholar]
- Wang X. et Wu C., 2019. Estimating the peak of growing season (POS) of China’s terrestrial ecosystems. Agricultural and Forest Meteor., 278, 107639. https://doi.org/10.1016/j.agrformet.2019.107639 [CrossRef] [Google Scholar]
- Williams T. O., Mul M., Cofie O., Kinyangi J., Zougmore R., Wamukoya G., Nyasimi M., Mapfumo P., Speranza C. I., Amwata D., Frid-Nielsen S., Partey S., Girvetz E., Rosenstock T., Campbell B., 2015. L’Agriculture Intelligente face au Climat dans le Contexte Africain. Banque Africaine de Développement, 32 pages. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.