Open Access
Volume 10, 2013
Page(s) 51 - 72
Published online 09 October 2015
  • Ahmed K. F., Wang G., Slinader J., Wilson A. M., Allen J. M., Horton R. et Anyah R. 2013 : Statistical downscaling and biais correction of climate model outputs for climate change impact assessment in the U.S. Northeast. Global and Plan. Ch., 100, 320–332. [CrossRef] [Google Scholar]
  • Boe J., Terray L., Habets F. et Martin E. 2007 : Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. International Journal of Climatology, 27, 1643–1655. [CrossRef] [Google Scholar]
  • Carrega P. 1982 : Les facteurs climatiques limitants dans le sud des Alpes Occidentales . Thèse de doctorat 3ème cycle, Revue d’Analyse Spatiale Quantitative et Appliquée, Nice, n°13, 221 pages. [Google Scholar]
  • Carrega P. 1994 : Topoclimatologie et habitat . Analyse Spatiale Quantitative et Appliquée, Revue de Géographie du laboratoire d’analyse spatiale Raoul Blanchard, thèse de doctorat, 408 pages. [Google Scholar]
  • Carrega P. 1995 : A method for the reconstruction of mountain air temperatures with automatic cartographic applications. Theoretical and Applied Climatology, 52, 69–84. [Google Scholar]
  • Chen S.-T., Yu P.-S. et Tang Y.-H. 2010 : Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385, 13–22. [CrossRef] [Google Scholar]
  • Deque M. 2007 : Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global and Planetary Change, 57, 16–26. [CrossRef] [Google Scholar]
  • Deque M. 2012 : Projet ANR-SCAMPEI . Compte-rendu de fin de projet, 20 pages. [Google Scholar]
  • Gachon P. & Dibike Y. 2007 : Temperature change signals in northern Canada: convergence of statistical downscaling results using two driving GCMs. International Journal of Climatology, 27, 1623–1641. [CrossRef] [Google Scholar]
  • Goyal M. K. et Ojha C. S. P. 2011 : PLS regression-based pan evaporation and minimum-maximum temperature projections for an arid lake basin in India. Theoretical and Applied Climatology, 105, 403–415. [CrossRef] [Google Scholar]
  • Goyal M. K. et Ojha C. S. P. 2012 : Downscaling of surface temperature for lake catchment in an arid region in India using linear multiple regression and neural networks. International Journal of Climatology, 32, 552–566. [CrossRef] [Google Scholar]
  • Hengl T. 2009 : A pratical guide to geostatistical mapping. Technical Research series report, Luxembourg, 293 pages. [Google Scholar]
  • Haylock M. R., Cawley G. C., Harpham C., Wilby R. L. et Goodess C. M. 2006 : Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios. International Journal of Climatology, 26, 1397–1415. [CrossRef] [Google Scholar]
  • IPCC 2007 : Changements climatiques 2007. Rapport de Synthèse, 114 pages. [Google Scholar]
  • Joly D. 1987 : L’interpolation supervisée. Une méthode de traitement destinée à la cartographie automatique présentée à l’aide d’un exemple de climatologie. Actes du Symposium intern. sur la topo-climatologie et ses applications, Liège (Belgique), mars 1985, 135–148. [Google Scholar]
  • Joly D., Brossard T., Cardot H., Cavaihles J., Hilal M. et Wavresky P. 2011 : Temperature interpolation based on local information: the example of France. International Journal of Climatology, 31, 2141–2153. [CrossRef] [Google Scholar]
  • Khalili M., Nguyen V. T. V. et Gachon P. 2013 : A statistical approach to multi-site multivariate downscaling of daily extreme temperature series. International Journal of Climatology, 33, 15–32. [CrossRef] [Google Scholar]
  • Khan M. S., Coulibaly P. et Dibike Y. 2006 : Uncertainty analysis of statistical downscaling methods. Journal of Hydrology, 319, 357–382. [CrossRef] [Google Scholar]
  • Laborde J.-P. 1984 : Analyse des données et cartographie automatique en hydrologie. Eléments d’hydrologie lorraine. Thèse de doctorat, Nancy, 484 pages. [Google Scholar]
  • Lhotellier R. 2005 : Spatialisation des températures en zone de montagne alpine. Thèse de doctorat, Grenoble 1, 352 pages. [Google Scholar]
  • Liu W., Fu G., Liu C. et Charles S. P. 2012 : A comparison of three multi-site statistical downscaling models for daily rainfall in the North China Plain. Theoretical and Applied Climatology, 111, 585–600. [CrossRef] [Google Scholar]
  • Liu Y. et Fan K. 2013 : A new statistical downscaling model for autumn precipitation in China. International Journal of Climatology, 33, 1321–1336. [CrossRef] [Google Scholar]
  • Lutz K., Jacobeit J., Philipp A., Seubert S., Kunstmann H. et Laux P. 2012 : Comparison and evaluation of statistical downscaling techniques for station-based precipitation in the Middle East. International Journal of Climatology, 32, 1579–1595. [CrossRef] [Google Scholar]
  • Madelin M. 2004 : L’aléa gélif printanier dans le vignoble marnais en Champagne : Modélisation spatiale aux échelles fines des températures minimales et des écoulements de l’air, Thèse de doctorat, Paris 7, 353 pages. [Google Scholar]
  • Mullan D., Fealy R. et Favis-Mortlock D. 2012 : Developing site-specific future temperature scenarios for Northern Ireland: addressing key issues employing a statistical downscaling approach. International Journal of Climatology, 32, 2007–2019. [CrossRef] [Google Scholar]
  • Nojarov P. 2012 : Bulgarian mountains air temperatures and precipitation-statistical downscaling of global climate models and some projections. Theoretical and Applied Climatology, 110, 631–644. [CrossRef] [Google Scholar]
  • Sachindra D. A., Huang F., Barton A. et Perera B. J. C. 2013 : Least square support vector and multi-linear regression for statistically downscaling general circulation model outputs to catchment streamflows. International Journal of Climatology, 33, 1087–1106. [CrossRef] [Google Scholar]
  • Souvignet M., Gaese H., Ribbe L., Kretschmer N. et Oyarzun R. 2010 : Statistical downscaling of precipitation and temperature in north-central Chile: an assessment of possible climate change impacts in an arid Andean watershed. Hydrological Sciences Journal, 55(1), 41–57. [CrossRef] [Google Scholar]
  • Souvignet M. et Heinrich J. 2011 : Statistical downscaling in the arid central Andes: uncertainty analysis of multi-model simulated temperature and precipitation. Theoretical and Applied Climatology, 106, 229–244. [CrossRef] [Google Scholar]
  • Von Storch H. 1995 : Inconsistencies at the interface of climate impact studies and global climate research. Meteorologische Zeitschrift, 4, 72–80. [CrossRef] [Google Scholar]
  • Von Storch H. 1999 : On the use of “inflation” in statistical downscaling. Journal of Climate, 12, 3505–3506. [CrossRef] [Google Scholar]
  • Wetterhall F., Bardossy A., Chen D., Halldin S. et Xu C.-Y. 2006 : Daily precipitation-downscaling techniques in three Chinese regions. Water Resources Research, 42, W114223. [CrossRef] [Google Scholar]
  • Wetterhall F., Halldin S. et Xu C.-Y. 2007 : Seasonality properties of four statistical-downscaling methods in central Sweden. Theoretical and Applied Climatology, 87, 123–137. [CrossRef] [Google Scholar]
  • Wilby R. L. et Wigley T. M. L. 2000 : Precipitation predictors for downscaling: observed and general circulation model relationships. International Journal of Climatology, 20, 641–661. [CrossRef] [Google Scholar]
  • Wilby R. L., Charles S. P., Zorita E., Timbal B., Whetton P. et Mearns L. O. 2004 : Guidelines for use of the climate scenarios developed from statistical downscaling methods. Published on-line, supporting material to the Intergovernmental Panel on Climate Change, 27. [Google Scholar]
  • Yin C., Li Y., Ye W., Bornman J.-F. et Yan X. 2011 : Statistical downscaling of regional daily precipitation over southeast Australia based on self-organizing maps. Theoretical and Applied Climatology, 105, 11–26. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.