Open Access
Issue |
Climatologie
Volume 5, 2008
|
|
---|---|---|
Page(s) | 27 - 47 | |
DOI | https://doi.org/10.4267/climatologie.714 | |
Published online | 09 October 2015 |
- Arnaud M. et Emery X., 2000 : Estimation et interpolation spatiale : méthodes déterministes et méthodes géostatistiques. Hermès, Paris, 221 pages. [Google Scholar]
- Baillargeon S., 2005 : Le krigeage: revue de la théorie et application à l’interpolation spatiale de données de précipitations. Mémoire de la faculté des sciences et de génie de l’université Laval. Québec, 128 pages (hhttp://www.theses.ulaval.ca/2005/22636/22636.pdf). [Google Scholar]
- Cressie N., 1993 : Statistics for Spatial Data. Revised edition, Wiley (ed.), N.Y., 900 pages. [Google Scholar]
- Cleveland W. et Devlin S., 1988 : Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 83, 403, 596–610. [Google Scholar]
- Courault D. et Monestiez, P., 1999 : Spatial interpolation of air temperature according to atmospheric circulation patterns in southeast France. International Journal of Climatology, 19, 365–378. [CrossRef] [Google Scholar]
- De Berg M., Van Kreveldh M., Overmarsh M. et Schwarzkopf O., 2000 : Computational Geometry: Algorithms and Applications. Second Edition, Springer-Verlag (ed.), 367 pages. [Google Scholar]
- Fotheringham A., Brundson C. et Charlton M., 2002 : Geographically Weighted Regression: the analysis of spatially varying relationships. Wiley & sons, Chicester, 288 pages. [Google Scholar]
- Foucart T., 2006 : Colinéarité et régressions linéaire. Math. & Sci. hum. ~ Mathematics and Social Sciences, 173(1), 5–25. [Google Scholar]
- Goovaerts P., 1997 : Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of hydrology, 228, 113–129. [Google Scholar]
- Gratton Y., 2002 : Le krigeage : la méthode optimale d’interpolation spatiale. Disponible à : www.iag.asso.fr/pdf/krigeage_juillet2002.pdf. [Google Scholar]
- Helland I.S., 1990 : Partial least squares regression and statistical models. Scand. J. Statist., 17, 97–114. [Google Scholar]
- Hocking R.R., 1976 : The analysis and selection of variables in linear regression. Biometrics, 32, 1–40. [CrossRef] [Google Scholar]
- Joly D., 2007 : L’information géographique au service de la climatologie. . In ‘Information Géographique et Aménagement du Territoire; Information géographique et climatologie’, Carrega P., Hermes, Paris, 23–72. [Google Scholar]
- Joly D., Nilsen L., Fury R., Elvebakk A. et Brossard T., 2003 : Temperature interpolation at a large scale; test on a small area in Svalbard. International Journal of Climatology, 23, 1637–1654. [CrossRef] [Google Scholar]
- Loader C., 2004 : Smoothing: local regression techniques. In Gentle J., Härdle W. et Moty Y. eds., Handbook of computational technics, Springler-Verlag, New-York, 539–564.Disponible à : http:/www.herine.net/stat/papers/hbcs.pdf. [Google Scholar]
- Matheron G., 1970 : Traité de géostatistique appliquée, Tome 1. Mémoires du bureau de recherches géologiques et minières, no 14, Technip (ed.), Paris. [Google Scholar]
- Mitas L. et Mitasova H., 1999 : Spatial interpolation. In: Geographical information systems : principles and technical issues (vol. 1), P.A. Longley, M.F. Goodchild, D.J. Maguire, D.W. Rhind, John Wiley & sons, N.Y., 481–492. [Google Scholar]
- Wackernagel H., 2003 : Multivariate Geostatistics: an introduction with applications. Springler-Verlag ed., Berlin, third completely revised edition, 387 pages. [Google Scholar]
- Wand M.P. et Jones M.C., 1995 : Kernel smoothing. Monographs on Statistics and applied Probability, Chapman & hall, London, 60, 2 pages. [Google Scholar]
- Wold S., Ruhe A., Wold H. et Dunn III W.J., 1984 : The collinearity problem in linear regression. The partial least squares (PLS) approached to generalized inverses. SIAM Sci. Stat. Comp., 5(3), 735–743. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.