Open Access
Volume 3, 2006
Page(s) 25 - 42
Published online 09 October 2015
  • Aida M., 1982 : Urban albedo as a function of the urban structure – a model experiment (Part I). Boundary-Layer Meteorology, 23, 405–413. [Google Scholar]
  • Adelene N.G., 1995 : Assessment of five radiosity acceleration techniques. Comput. Graphics, 19, 5, 727–738. [Google Scholar]
  • Al-Sanea S.A., 2002 : Thermal performance of building roof elements. Building and Environment, 37, 7, 665–675. [Google Scholar]
  • Arnfield A.J., 2003 : Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23, 1–26. [CrossRef] [Google Scholar]
  • Arnfield A.J. et Grimmond C.S.B., 1998 : An Urban Canyon Energy Budget Model and itsApplication to Urban Storage Heat Flux Modelling. Energy and Buildings, 27, 61–68. [Google Scholar]
  • Badescu V. et Sicre B., 2003 : Renewable energy for passive house heating. Energy and Buildings, 35, 1085–1096. [Google Scholar]
  • Bozonnet E., Belarbi R. et Allard F., 2005 : Modelling solar effects on the heat and mass transfer in a street canyon, a simplified approach. Solar Energy, 79, 10–24. [Google Scholar]
  • Carslaw H.S. et Jaeger J.C., 1959 : Conduction of Heat in Solids. Oxford University Press, Oxford, 2nd edition, 520 p. [Google Scholar]
  • Chan T.L. et Dong G., 2002 : Validation of a two dimensional pollutant dispersion model in an isolated street canyon. Atmospheric Environment, 36, 861–872. [Google Scholar]
  • Chang C.C. et Shih Z.C., 1998 : An accuracy enhancement algorithm for hierarchical radiosity. Comput. Graphics, 22, 2–3, 225–232. [Google Scholar]
  • Davies M.G., 2003 : A rationale for nodal placement for heat flow calculations in walls. Building and Environment, 38, 247–260. [Google Scholar]
  • De La Flor F.S. et Dominguez S.A., 2004 : Modelling microclimate in urban environments and assessing its influence on the performance of surrounding buildings. Energy and Buildings, 36, 5, 403–413. [Google Scholar]
  • Edmonds I.R., 1968 : Stephan-Boltzmann Law in the Laboratory. American Journal of Physics, 36, 9, 845–846. [Google Scholar]
  • Eliasson I., Offerle B., Grimmond C.S.B. et Lindqvist S., 2006 : Wind fields and turbulence statistics in an urban street canyon. Atmospheric environment, 40, 1–16. [Google Scholar]
  • Grimmond C.S.B., Potter S.K., Zutter H.N. et Souch C., 2001 : Evaluation and application of automated methods for estimating sky view factors in urban areas. International Journal of Climatology, 21, 903–913. [Google Scholar]
  • Harman I.N., Best M.J. et Belcher S.E., 2004 : Radiative exchange in an urban street canyon. Boundary-Layer Meteorology, 110, 301–316. [Google Scholar]
  • Incropera F.P. et De Witt D.P., 1996 : Fundamentals of Heat and Mass Transfer. John Wiley & Sons 4th ed., 885. p. [Google Scholar]
  • Ito N., Kimura K. et Oka J., 1972 : A field experiment study on the convective heat transfer coefficient on the exterior surface of a building. ASHRAE Transactions, 78, 1. [Google Scholar]
  • Johnson G.T. et Watson I.D., 1984 : The determination of view-factors in urban canyons. Journal of Applied Climate and Meteorology. 23, 329–335. [Google Scholar]
  • Kamenetsky E. et Vieru N., 1995 : Model of air flow and air pollution concentration in urban canyons. Boundary-layer Meteorology, 73, 1–2, 203–206. [Google Scholar]
  • Kastner-Klein P. et Federovich E.A., 2001 : Wind-tunnel study of organized and turbulent air motions in street canyons. Engeneering and Industrial Aerodynamics, 89, 849–861. [Google Scholar]
  • Kondo A., Ueno M., Kaga A. et Yamaguchi K., 2001 : The influence of urban canopy configuration on urban albedo. Boundary-Layer Meteorology, 100, 225–242. [Google Scholar]
  • Kusaka H., Kondo H., Kikegawa Y. et Kimura F., 2001 : A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and SLAB models. Bound.-Layer Meteor., 101, 329–358. [Google Scholar]
  • Masson V., 2000 : A physically-based scheme for the urban energy budget in atmospheric models. Boundary-layer Meteorology, 94, 357–397. [Google Scholar]
  • Mills G.M., 1993 : Simulation of the energy budget of an urban canyon. I. Model structure and sensitivity test. Atmospheric Environment, 27B(2), 157–170. [Google Scholar]
  • Mills G., 1997a : Building density and interior building temperatures: A physical modeling experiment. Physical Geography, 18 (3), 195–214. [Google Scholar]
  • Mills G., 1997b : The radiative effects of building groups on single structures. Energy and Buildings, 25, 51–61. [Google Scholar]
  • Moller T. et Trumbore B., 1997 : Fast, minimum storage ray-triangle intersection. Journal on Graphic Tools, 2, 1, 21–28. [Google Scholar]
  • Najjar G., Kastendeuch P.P., Stoll M.-P., Colin J.R., Nerry F., Ringenbach N., Bernard J., De Hatten A., Luhahe R. et Viville D., 2004 : Le projet Reclus, télédétection, rayonnement et bilan d’énergie en climatologie urbaine à Strasbourg. La Météorologie, 46, 44–50. [Google Scholar]
  • Nayard S.K., Ikeuchi K. et Kanade T., 1991 : Surface reflection: Physical and geometrical perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7), 611–634. [Google Scholar]
  • Oke T.R., 1981 : Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. Journal of Climatology, 1, 237–254. [Google Scholar]
  • Ozisik N., 1973 : Radiative transfer and interactions with conduction and convection. Wiley-Interscience Publication, 575 p. [Google Scholar]
  • Pearlmutter D., Berliner P. et Shaviv E., 2005 : Evaluation of urban surface energy fluxes using an open-air scale model. Journal of Applied Meteorology, 44, 532–545. [Google Scholar]
  • Perez R., Seals R., Michalsky J., 1993 : An All-Weather Model for Sky Luminance Distribution - A Preliminary Configuration and Validation. Solar Energy, 50, 3, 235–245. [CrossRef] [Google Scholar]
  • Pianykh O.S., Tyler J.M. et Waggenspack W.N., 1998 : Improved monte carlo form factor integration. Computer Graphics, 22, 6, 723–734. [CrossRef] [Google Scholar]
  • Picot X., 2004 : Thermal comfort in urban spaces: impact of vegetation growth Case study: Piazza della Scienza, Milan, Italy. Energy and Buildings, 36, 329–334. [CrossRef] [Google Scholar]
  • Pitman A.J., 2003 : The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23, 479–510. [CrossRef] [Google Scholar]
  • Reda I. et Andreas A., 2004 : Solar position algorithm for solar radiation applications. Solar Energy, 76, 577–589. [CrossRef] [Google Scholar]
  • Ringenbach N., 2004 : Bilan radiatif et flux de chaleur en climatologie urbaine : mesures, modélisation et validation sur Strasbourg. Thèse de l’Université Louis Pasteur, Strasbourg I, 166 p. [Google Scholar]
  • Robinson D. et Stone A., 2004 : Solar radiation modelling in the urban context. Solar Energy, 77, 295–309. [CrossRef] [Google Scholar]
  • Robitu M., Musy M., Inard C. et Groleau D., 2006 : Modeling the influence of vegetation and water pond on urban microclimate. Solar Energy, 80, 435–447. [CrossRef] [Google Scholar]
  • Runnalls K.E. et Oke T.R., 2000 : Dynamics and controls of the near-surface heat island of Vancouver, British Columbia. Physical Geography, 21, 283–304. [CrossRef] [Google Scholar]
  • Sakakibara Y., 1996 : A numerical study of the effect of urban geometry upon the surface energy budget. Atmospheric Environment, 30, 3, 487–496. [CrossRef] [Google Scholar]
  • Schroder P. et Hanrahan P., 1993 : On the form factor between two polygons. Computer Graphics Proceedings. ACM SIGGRAPH’93 Proceedings. [Google Scholar]
  • Segura R.J. et Feito F.R., 1998 : An algoritm for determining intersection segment-polygon in 3D. Computer & Graphics, 22, 5, 587–592. [CrossRef] [Google Scholar]
  • Shewchuk J.R., 1996 : Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In: Applied Computational Geometry: Towards Geometric Engineering (Ming C Lin and Dinesh Manocha, editors), volume 1148 of Lecture Notes in Computer Science, Springer, Berlin, 203–222 [CrossRef] [Google Scholar]
  • Shewchuk J.R., 2002 : Delaunay Refinement Algorithms for Triangular Mesh Generation. Computational Geometry: Theory and Applications, 22(1–3), 21–74. [CrossRef] [MathSciNet] [Google Scholar]
  • Smith W.S., Reisner J.M. et Kao C.-Y.J., 2001 : Simulations of flow around a cubical building: comparison with towing-tank data and assessment of radiatively induced thermal effects. Atmospheric Environment, 35, 3811–3821. [CrossRef] [Google Scholar]
  • Spronken-Smith R.A. et Oke T.R., 1999 : Scale modelling of nocturnal cooling in urban parks. Boundary-Layer Meteorology, 93, 287–312. [CrossRef] [Google Scholar]
  • Temps R.C. et Coulson K.L., 1977 : Solar radiation incident upon slopes of different orientations. Solar Energy, 19, 179–184. [CrossRef] [Google Scholar]
  • Terjung W. et O’Rourke P., 1980 : Influence of physical structures on urban energy budgets. Boundary-Layer Meteorology, 19, 421–439. [CrossRef] [Google Scholar]
  • Torrance K. et Sparrow E., 1967 : Theory for Off-Specular Reflection from Rough Surfaces. Journal of the Optical Society of America, 57, 9, 1105–1114. [CrossRef] [Google Scholar]
  • Tuomaala P., Piira K. et Vuolle M., 2000 : A rational method for the distribution of nodes in modelling of transient heat conduction in plane slabs. Building and Environment, 35, 397–406. [CrossRef] [Google Scholar]
  • Xie X., Zhen Huang Z., Jiasong Wang J. et Xie Z., 2005 : The impact of solar radiation and street layout on pollutant dispersion in street canyon. Building and Environment, 40, 201–212. [CrossRef] [Google Scholar]
  • Yamartino R.J. et Wiegand G., 1986 : Development and evaluation of simple models for the flow, turbulence and pollutant concentration fields within an urban street canyon. Athmospheric Environment, 20, 2137–2156. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.